http://www.ktuonline.com

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION DECEMBER 2015 Electrical and Electronics Engineering (COMMON to all streams)

01MA6021: Advanced Mathematics & Optimization Techniques <

Time: 3 hours Max: Marks : 60

Answer any two full questions from each part.

PART-A (Module: I and II)

- 1. a. Determine whether $S = \{(x_1, x_2, x_3) | x_i \ge 0, x_i \in R^3\}$ is a subspace of R^3 . Justify your answer. (4)
 - b. Find a basis for the null space and column space of $A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}$ (5)
- 2. a. Let T be defined by T(x, y) = (3x + y, 5x + 7y, x + 3y). Show that T is a one to one linear transformation. Does T map R^2 onto R^3 (4)
 - b. Let U be the sub space of R³ spanned by the vectors $u_1 = \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$

Find an orthonormal basis for U by Gram-Schmidt orthogonalization process . (5)

- 3. a. Find a singular value decomposition of $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$ (5)
 - b. Find a least squares solution of the inconsistent system Ax = b where $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$ and

$$b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} \tag{4}$$

PART-B (Module III and IV)

4. a. Solve the following LPP by simplex method. Minimize $f=-x_1-2x_2-x_3$, subject to the constraints $2x_1+x_2-x_3\leq 3$, $2x_1-x_2+5x_3\leq 6$, $4x_1+x_2+x_3\leq 6$,

$$x_1, x_2, x_3 \ge 0$$
 (6)

b. Construct the dual of the LPP

Maximize $f = 50x_1 + 100x_2$ subject to the constraint $2x_1 + x_2 \le 1250$, $2x_1 + 5x_2 \le 1000$, $2x_1 + 3x_2 \le 900$, $x_2 \le 150$, $x_1, x_2 \ge 0$ (3)

- 5. a. How can you solve an integer non linear programming problem? (3)
 - b. Minimize $f(X) = x_1^2 x_1 x_2 + 3x_2^2$ starting at $X_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ by the method of steepest descent. (carry out only two iterations) (6)
- 6. a. What are the roles of exploratory and pattern moves in the Hook and Jeeves method? (3)
- b. Minimize $f(X) = x_1^2 x_1x_2 + x_1 + 3x_2 1$ starting at $X_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ by conjugate gradient method. (6)

PART-C (Module V and VI)

- 7. a. Consider the problem Minimize $f(\mathbf{X}) = (x_1 1)^2 + (x_2 5)^2$ subject to $g_1 = -x_1^2 + x_2 4 \le 0, \ g_2 = -(x_1 2)^2 + x_2 3 \le 0$ Formulate the direction finding problem at $X = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$ as a linear programming problem in Zoutendijk's method. (6)
 - b. $\operatorname{Minf}(X) = x_1^2 + x_2^2 6x_1 8x_2 + 10$ subject to $4x_1^2 + x_2^2 \le 16$ $3x_1 + 5x_2 \le 0$ $x_1, x_2 \ge 0$ with starting point $X = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ using cutting plane method. Complete one step of the process. (6)
- 8. a. Apply Kuhn -Tucker condition to solve the following problem

Min
$$f(X) = -2x_1 - x_2$$
 subject to $x_1 - x_2 \le 0$, $x_1^2 + x_2^2 \le 4$ $x_1, x_2 \ge 0$ (6)

attp://www.ktuonline.com

- b. Minimize Min $f(X) = \frac{1}{3}(x_1 + 3)^2 + x_2^3$ subject to $g_1(X) = x_1 2 \ge 0$, $g_2(X) = x_2 \ge 0$, by exterior penalty function method. (6)
- 9. a. Determine whether the following optimization problem is convex, concave or neither type $\min f(\mathbf{X}) = -4x_1 + x_1^2 2x_1x_2 + 2x_2^2$, subject to $2x_1 + x_2 \le 6$, $x_1 4x_2 \le 0$, $x_1, x_2 \ge 0$
 - b. Solve the following Linear programming problem as a dynamic programming problem Maximize $z = 3x_1 + 4x_2$ subject to the constraint $2x_1 + x_2 \le 40$, $2x_1 + 5x_2 \le 180$, $x_1, x_2 \ge 0$