A7001

	Total Pages: 3	
Reg N	o.: Name:	
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
	Course Code: MA101	
	Course Name: CALCULUS	
Max. N	Marks: 100 Duration:	3 Hours
	PART A Answer all auestions, each carries5 marks.	Marks
1 a)	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{2k-1}}$.	(2)
b)	Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{2n+3}$.	(3)
2 a)	Find the Slope of the surface $z = xe^{-y} + 5y$ in the y-direction at the point (4,0).	(2)
b)	Find the derivative of $z = \sqrt{1 + x - 2xy^4}$ with respect to t along the path $x = \log t$, $y = 2t$.	(3)
3 a)	Find the directional derivative of $f = x^2 y - yz^3 + z$ at $(-1, 2, 0)$ in the direction of $a = 2i + j + 2k$.	(2)
b)	Find the unit tangent vector and unit normal vector to $r(t) = 4\cos t i + 4\sin t j + tk$ at $t = \frac{\pi}{2}$	(3)
4 a)	at $t = \frac{1}{2}$. Evaluate $\int_{0}^{\log 3} \int_{0}^{\log 2} e^{x+2y} dy dx$.	(2)
b)	Evaluate $\iint_{R} xy dA$, where R is the region bounded by the curves $y = x^2$ and	(3)
E (-	$x = y^2.$	(2)
5 (a	Find the divergence and curl of the vector $F(x, y, z) = yzi + xy^2 j + yz^2 k$.	(2)
(0	b) Evaluate $\int_{C} (3x^2 + y^2) dx + 2xy dy$ along the circular arc C given by	(3)
	$x = \cos t, y = \sin t$ for $0 \le t \le \frac{1}{2}$.	
6 (a	Use line integral to evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	(2)
(b	Evaluate $\int_C (x^2 - 3y)dx + 3xdy$, where C is the circle $x^2 + y^2 = 4$.	(3)
	PART B Module 1	
	Answer any two questions, each carries 5 marks.	
7	Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$.	(5)

A7001

A

8	Test the absolute convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}$.	(5)
9	Find the Taylor series for $\frac{1}{1+x}$ at $x = 2$.	(5)
	Module 1I	
	Answer any two questions, each carries 5 marks.	<i>.</i> – .
10	Find the local linear approximation L to $f(x, y) = \log(xy)$ at P(1,2) and compare the error in approximating f by L at Q(1.01, 2.01) with the distance between P and O.	(5)
11	Let $w = 4x^2 + 4y^2 + z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Find $\frac{\partial w}{\partial \rho}, \frac{\partial w}{\partial \phi}$ and $\frac{\partial w}{\partial \theta}$.	(5)
12	Locate all relative extrema and saddle points of $f(x, y) = 4xy - x^4 - y^4$.	(5)
	Module 1II	
13	Answer any two questions, each carries 5 marks. Find the equation of the tangent plane and parametric equation for the normal line to the surface $x^2 + y^2 + z^2 = 25$ at the point (3,0, 4).	(5)
14	A particle is moving along the curve $r(t) = (t^3 - 2t)i + (t^2 - 4)j$ where t denotes the time. Find the scalar tangential and normal components of acceleration at t = 1. Also find the vector tangential and normal components of acceleration at t = 1	(5)
15	The graphs of $r_1(t) = t^2 i + tj + 3t^3 k$ and $r_2(t) = (t-1)i + \frac{1}{4}t^2 j + (5-t)k$ are	(5)
	intersect at the point $P(1,1,3)$. Find, to the nearest degree, the acute angle between the tangent lines to the graphs of $r_1(t) \& r_2(t)$ at the point $P(1,1,3)$.	
	Module 1V	
	Answer any two questions, each carries5 marks.	
16	Change the order of integration and evaluate $\int_{0}^{1} \int_{4x}^{4} e^{-y^2} dy dx$.	(5)
17	Use triple integral to find the volume bounded by the cylinder $x^2 + y^2 = 9$ and between the planes $z = 1$ and $x + z = 5$.	(5)
18	Find the area of the region enclosed between the parabola $y = \frac{x^2}{2}$ and the line	(5)
	y = 2x.	
	Module V	
10	Answer any three questions, each carries5 marks.	
19	Determine whether $F(x, y) = (\cos y + y \cos x)i + (\sin x - x \sin y)j$ is a conservative vector field. If so find the potential function for it	(5)
20	Show that the integral $\int_{(1,1)}^{(3,3)} (e^x \log y - \frac{e^y}{x}) dx + (\frac{e^x}{y} - e^y \log x) dy$, where x and y	(5)
	are positive is independent of the path and find its value.	
21	Find the work done by the force field $F(x, y, z) = xyi + yzj + xzk$ on a particle that moves along the curve $C: r(t) = ti + t^2j + t^3k \ (0 \le t \le 1)$.	(5)

A7001

22	Let $\overline{r} = xi + yj + zk$ and $r = \overline{r} $, let f be a differentiable function of one variable,	(5)
	then show that $\nabla f(r) = \frac{f'(r)}{r} \frac{f'(r)}{r}$.	
23	Find $\nabla . (\nabla \times F)$ and $\nabla \times (\nabla \times F)$ where $F(x, y, z) = e^{xz}i + 4xe^{y}j - e^{yz}k$.	(5)
	Module VI	
	Answer any three questions, each carries5 marks.	
24	Use Green's Theorem to evaluate $\int_C \log(1+y)dx - \frac{xy}{(1+y)}dy$, where C is the	(5)
	triangle with vertices $(0,0)$, $(2,0)$ and $(0,4)$.	
25	Evaluate the surface integral $\iint_{\sigma} xzds$, where σ is the part of the plane $x + y + z = 1$	(5)
	that lies in the first octant.	
26	Using Stoke's Theoremevaluate $\int_{C} F dr$ where $F(x, y, z) = xzi + 4x^2y^2j + yxk$, C	(5)
	is the rectangle $0 \le x \le 1, 0 \le y \le 3$ in the plane $z = y$.	
27	Using Divergence Theorem evaluate $\iint_{\sigma} \overline{F} \cdot n ds$ where	(5)
	$F(x, y, z) = x^{3}i + y^{3}j + z^{3}k$, σ is the surface of the cylindrical solid bounded by	
	$x^{2} + y^{2} = 4, z = 0$ and $z = 4$.	
28	Determine whether the vector fields are free of sources and sinks. If it is not, locate them	(5)
	(i) $(y+z)i - xz^{3}j + x^{2} \sin yk$ (ii) $xyi - 2xyj + y^{2}k$	

Α