Reg No..... Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2016 (2015 ADMISSION)

Course Code: MA 101

Course Name: CALCULUS

Max. Marks: 100 **Duration: 3 Hours**

PART A

(Answer all questions. Each question carries 3 marks)

1 Find the derivative of $y = (1 + x \cosh^{-1} x)^2$

- Test the convergence of $\sum_{n=1}^{\alpha} \left(\frac{n}{n+1} \right)^{n^2}$ 2
- Classify the surface $4x^{2} + 4y^{2} + z^{2} + 8y 4z = 4$ 3
- Convert the rectangular co-ordinate into spherical co-ordinate of $(2, 2\sqrt{3}, -4)$ 4
- Prove that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ where $f = x^2 y$.
- Find the velocity, acceleration and speed of a particle moving along the curve x = 1 + 3t, y = 3 - 4t, z = 1 + 3t at = 2
- Given $z = e^{xy}$, x = 2u + v, $y = \frac{u}{v}$ Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$
- 8 Find the unit tangent vector and unit normal vector to the curve

- $x = e^{t} \cos t$, $y = e^{t} \sin t$, $z = e^{t} at t = 0$. Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} 2y dx dy$
- Find the area of the region R enclosed between the parabola $y = \frac{x^2}{2}$ and the

line y = 2x

(10*3=30 Marks)

PART B

(Answer any 2 questions each question carries 7 marks)

- Find the radius of curvature and interval of curvature of $\sum_{n=1}^{\alpha} \frac{x^n}{2n+3}$
- 12 Test the convergence of $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + - -$
- 13 Determine the Taylor's series expansion of $f(x) = \sin x$ at $x = \pi/4$.

(Answer any 2 questions each question carries 7 marks)

14 Find the nature of domain of the following function

1.
$$f(x, y) = \sqrt{x^2 - y^2}$$

$$2. f(x, y) = \ln(x^2 - y)$$

- 15 Show that the function $f(x, y) = \frac{x^3 y}{2x^6 + y^2}$ approaches zero as $(x, y) \to (0, 0)$ along the line y = mx.
- Find the trace of the surface $x^2 + y^2 z^2 = 0$ in the plane x = 2 and y = 1. $x^2 + y^2 - z^2 = 0$

(Answer any 2 questions each question carries 7 marks)

- Find the local linear approximation of $f(x,y) = \sqrt{(x^2 + y^2)}$ at (3,4) and compare the error in approximation by L(3.04,3.98) with the distance between the points.
- 18 Find the relative extrema of $f(x, y) = 3x^2 2xy + y^2 8y$
- 19 If $z = e^{xy}$, x = 2u + v, $y = \frac{u}{v}$ Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$

(Answer any 2 questions each question carries 7 marks)

- 20 If $r(t) = e^t i + e^{-2t} j + tk$
 - 1) Find the scalar tangential and normal component of acceleration at t = 0
 - 2) Find the vector tangential and normal component of acceleration at t = 0.
- 21 Find the equation of the tangent plane and parametric equations of the normal

line to the surface $z = 4x^3y^2 + 2y - 2$ at the point P (1, -2, 10).

Find the directional derivative of $f = x^2y - yz^3 + z$ at (1,-2,0) in the direction of $\vec{a} = 2\vec{i} + \vec{j} + 2\vec{k}$

(Answer any 2 questions each question carries 7 marks)

- Evaluate $\iint_R y \, dA$ where R is the region in the first quadrant enclosed between the circle $x^2 + y^2 = 25$ and the line x+y=5
- Change the order of integration and evaluate $\int_{1}^{2} \int_{y}^{y^{2}} y^{2} dx dy$
- 25 Find the volume bounded by the cylinder $x^2 + y^2 = 4$ the planes y + z = 3 and z = 0.