1

2

3

4

5

10

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, APRIL 2018

A1801

Course Code: MA101

Course Name: CALCULUS

Max. Marks: 100

PART A Marks Answer all questions, each carries 5 marks. Determine whether the series $\sum_{k=0}^{\infty} \frac{5}{4^k}$ converges. If so, find the sum (2)a) Examine the convergence of $\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$ (3)b) Find the slope of the surface $z = x e^{-y} + 5y$ in the y direction at the point (4, 0) (2)a) b) Show the function $f(x, y) = e^x \sin y + e^y \cos x$ satisfies the Laplace's equation (3) $f_{xx} + f_{yy} = 0$ Find the directional derivative of $f(x, y, z) = x^3 z - yx^2 + z^2$ at P (2, -1, 1) a) (2)in the direction of 3 $\vec{\iota}$ - \vec{j} +2k Find the unit tangent vector and unit normal vector to the curve b) (3) $\mathbf{r}(t) = 4\cos t \, \mathbf{i} + 4\sin t \, \mathbf{j} + t \, \mathbf{k} \, at \, t = \frac{\pi}{2}$ Using double integration, evaluate the area enclosed by the lines a) (2) $x = 0, \quad y = 0, \frac{x}{a} + \frac{y}{b} = 1$ b) (3) $\int_{1}^{2} \int_{0}^{2} \int_{0}^{1} (x^{2} + y^{2} + z^{2}) dx \, dy \, dz$ Evaluate If $F(x, y, z) = x^2 i - 3j + y z^2 k$ find div F(2)a) b) Find the work done by the force field F = xy i + yz j + zx k on a particle that (3)moves along the curve C: $x = t, y = t^2, z = t^3, 0 \le t \le 1$ a) Use Green's theorem to evaluate $\int_{a}^{b} (xdy - ydx)$, where c is the circle $x^2 + y^2 =$ (2) a^2 b) If S is any closed surface enclosing a volume V and F = xi + 2yj + 3zk show (3) $\iint_{a} \mathbf{F} \cdot \mathbf{n} \, ds = 6V$ that PART B Module I Answer any two questions, each carries 5 marks. Determine whether the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+7}{k(k+4)}$ is absolutely (5)convergent Find the Taylor series expansion of $f(x) = \frac{1}{x+2}$ about x = 1(5) Find the interval of convergence and radius of convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(x+1)^k}{k}$ (5)Module II Answer any two questions, each carries 5 marks. Find the local linear approximation L to the function f(x, y, z) = xyz at the (5)

pointP (1,2,3). Also compare the error in approximating f by L at the point Q (1.001, 2.002, 3.003) with the distance PQ.

Locate all relative extrema and saddle points of f (x, y) = $2xy - x^3 - y^2$ 11 (5)

12 If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$ (5)

Duration: 3 Hours

- 6

- 7
- 8 9

A1801

Α

Module III

	Answer any two questions, each carries 5 marks.	
13	Write the parametric equations of the tangent line to the graph of $r(t) = \ln t i + e^{-t}i + t^4k at t = 2$	(5)
14	A particle moves along the curve $\mathbf{r} = (t^3 - 4t)\mathbf{i} + (t^2 + 4t)\mathbf{j} + (t^2 + 4t)\mathbf{j}$	(5)
	$(8t^2 - 3t^3)\mathbf{k}$ where t denotes time. Find	
	(i) the scalar tangential and normal components of acceleration at time $t = 2$	
15	(ii) the vector tangential and normal components of acceleration at time $t = 2$	(5)
15	Find the equation to the tangent plane and parametric equations of the normal line to the ellipsoid $r^2 + v^2 + 4z^2 = 12$ at the point (2, 2, 1)	(5)
	Module IV	
	Answer any two questions, each carries 5 marks.	
16	Prevenue the order of integration and evolute $\int_{1}^{1} \int_{1}^{1} \frac{x}{x} dy dx$	(5)
	Reverse the order of integration and evaluate $\int_{0}^{1} \int_{x} \frac{1}{x^{2} + y^{2}} dy dx$	
17	If R is the region bounded by the parabolas $y = x^2$ and $y^2 = x$ in the first	(5)
	quadrant, evaluate $\iint_{R} (x+y) dA$	
18	Use triple integral to find the volume of the solid bounded by the surface $y = x^2$	(5)
	and the planes $y + z = 4$, $z = 0$.	
	Module V	
10	Answer any three questions, each carries 5 marks.	(5)
20	If $r = x t + y f + z k$ and $r = r $, show that $v \log r = \frac{1}{r^2}$	(5)
20	Examine whether $\mathbf{F} = (x^2 - yz)\mathbf{i} + (y^2 - zx)\mathbf{j} + (z^2 - xy)\mathbf{k}$ is a conservative field. If so, find the potential function	(5)
21	Show that $\nabla^2 f(r) = 2 \frac{f'(r)}{r} + f''(r)$, where $r = xi + yj + zk$, $r = r $	(5)
22	Compute the line integral $\int_{c} (y^2 dx - x^2 dy)$ along the triangle whose vertices are	(5)
	(1,0), (0,1)and (-1,0)	(-)
23	Show that the line integral $\int_{c} (y \sin x dx - \cos x dy)$ is independent of the path and	(5)
	hence evaluate it from $(0, 1)$ and $(\pi, -1)$	
	Module VI	
24	Answer any three questions, each carries 5 marks.	(5)
27	Using Green's theorem, find the work done by the force field $f(x,y) = (e^x - y^3)\vec{i} + (\cos y + x^3)\vec{j}$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counter clockwise direction	(3)
25	Using Green's theorem evaluate $\int (xy + y^2) dx + x^2 dy$, where <i>c</i> is the boundary of	(5)
	the area common to the curve $y = x^2$ and $y = x$	
26	Evaluate the surface integral $\iint_{S} xzds$, where S is the part of the plane	(5)
	x + y + z = 1 that lies in the first octant	
27	Using divergence theorem, evaluate $\iint_{S} F.n ds$ where	(5)
	$F = (x^2 + y) i + z^2 j + (e^y - z) k$ and S is the surface of the rectangular solid bounded by the co ordinate planes and the planes $x = 3$, $y = 1$, $z = 3$	
28	Apply Stokes's theorem to evaluate $\int_{C} F dr$, where $F = (x^2 - y^2)i + 2xyj$ and c is	(5)
	the rectangle in the xy plane bounded by the lines $x = 0, y = 0, x = a$ and $y = b$	