A A7001

	Total Pages: 3	
Reg No.:	Name:	
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
	Course Code: MA101	
	Course Name: CALCULUS	
Max. Ma		3 Hours
	PART A Answer all questions, each carries5 marks.	Marks
1 a)	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{2k-1}}$.	(2)
b)	Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{2n+3}$.	(3)
2 a)	Find the Slope of the surface $z = xe^{-y} + 5y$ in the y-direction at the point (4,0).	(2)
b)	Find the derivative of $z = \sqrt{1 + x - 2xy^4}$ with respect to t along the path $x = \log t$, $y = 2t$.	(3)
3 a)	Find the directional derivative of $f = x^2y - yz^3 + z$ at $(-1, 2, 0)$ in the direction of	(2)
	a = 2i + j + 2k.	
b)	Find the unit tangent vector and unit normal vector to $r(t) = 4\cos ti + 4\sin tj + tk$	(3)
	at $t=\frac{\pi}{2}$.	
4 a)	\mathcal{L}	(2)
,	Evaluate $\int_{0}^{\log 3} \int_{0}^{\log 2} e^{x+2y} dy dx.$	(-)
b)	Evaluate $\iint_{R}^{0} xy dA$, where R is the region bounded by the curves $y = x^2$ and	(3)
	$x = y^2$.	
5 (a)	Find the divergence and curl of the vector $F(x, y, z) = yz i + xy^2 j + yz^2 k$.	(2)
(b)	Evaluate $\int_C (3x^2 + y^2) dx + 2xy dy$ along the circular arc C given by	(3)
	$x = \cos t, y = \sin t \text{ for } 0 \le t \le \frac{\pi}{2}.$	
6 (a)	Use line integral to evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	(2)
(b)	Evaluate $\int_C (x^2 - 3y)dx + 3xdy$, where C is the circle $x^2 + y^2 = 4$.	(3)
	PART B	
	Module 1 Answer any two questions, each carries 5 marks.	
7	Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$.	(5)

A A7001

- Test the absolute convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}.$ (5)
- Find the Taylor series for $\frac{1}{1+x}$ at x=2. (5)

Module 11

Answer any two questions, each carries 5 marks.

- Find the local linear approximation L to $f(x, y) = \log(xy)$ at P(1,2) and compare the error in approximating f by L at Q(1.01, 2.01) with the distance between P and Q.
- Let $w = 4x^2 + 4y^2 + z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Find $\frac{\partial w}{\partial \rho}$, $\frac{\partial w}{\partial \phi}$ and $\frac{\partial w}{\partial \theta}$. (5)
- Locate all relative extrema and saddle points of $f(x, y) = 4xy x^4 y^4$. (5)

Module 1II

Answer any two questions, each carries 5 marks.

- Find the equation of the tangent plane and parametric equation for the normal line to the surface $x^2 + y^2 + z^2 = 25$ at the point (3,0,4).
- A particle is moving along the curve $r(t) = (t^3 2t)i + (t^2 4)j$ where t denotes the time. Find the scalar tangential and normal components of acceleration at t = 1. Also find the vector tangential and normal components of acceleration at t = 1.
- The graphs of $r_1(t) = t^2i + tj + 3t^3k$ and $r_2(t) = (t-1)i + \frac{1}{4}t^2j + (5-t)k$ are intersect at the point P(1,1,3). Find, to the nearest degree, the acute angle between the tangent lines to the graphs of $r_1(t) \& r_2(t)$ at the point P(1,1,3).

Module 1V

Answer any two questions, each carries5 marks.

- 16 Change the order of integration and evaluate $\int_{0}^{1} \int_{4x}^{4} e^{-y^{2}} dy dx.$ (5)
- Use triple integral to find the volume bounded by the cylinder $x^2 + y^2 = 9$ and (5) between the planes z = 1 and x + z = 5.
- Find the area of the region enclosed between the parabola $y = \frac{x^2}{2}$ and the line y = 2x. (5)

Module V

Answer any three questions, each carries5 marks.

- Determine whether $F(x, y) = (\cos y + y \cos x)i + (\sin x x \sin y)j$ is a (5) conservative vector field. If so find the potential function for it.
- Show that the integral $\int_{(1,1)}^{(3,3)} (e^x \log y \frac{e^y}{x}) dx + (\frac{e^x}{y} e^y \log x) dy$, where x and y (5)
 - are positive is independent of the path and find its value.
- Find the work done by the force field F(x, y, z) = xyi + yzj + xzk on a particle (5) that moves along the curve $C: r(t) = ti + t^2j + t^3k$ ($0 \le t \le 1$).

A A7001

- Let r = xi + yj + zk and r = ||r||, let f be a differentiable function of one variable, then show that $\nabla f(r) = \frac{f'(r)}{r}r$.
- Find $\nabla \cdot (\nabla \times F)$ and $\nabla \times (\nabla \times F)$ where $F(x, y, z) = e^{xz}i + 4xe^{y}j e^{yz}k$. (5)

Module VI

Answer any three questions, each carries5 marks.

- Use Green's Theorem to evaluate $\int_{C} \log(1+y)dx \frac{xy}{(1+y)}dy$, where C is the triangle with vertices (0,0), (2,0) and (0,4).
- Evaluate the surface integral $\iint_{\sigma} xzds$, where σ is the part of the plane x + y + z = 1 (5) that lies in the first octant.
- Using Stoke's Theoremevaluate $\int_C F \cdot dr$ where $F(x, y, z) = xzi + 4x^2y^2j + yxk$, C (5) is the rectangle $0 \le x \le 1, 0 \le y \le 3$ in the plane z = y.
- Using Divergence Theorem evaluate $\iint_{\sigma} \overline{F} \cdot n \, ds$ where (5) $F(x,y,z) = x^3 i + y^3 j + z^3 k, \ \sigma \text{ is the surface of the cylindrical solid bounded by}$ $x^2 + y^2 = 4, \ z = 0 \text{ and } z = 4.$
- Determine whether the vector fields are free of sources and sinks. If it is not, locate them

(i)
$$(y+z)i - xz^3j + x^2 \sin yk$$
 (ii) $xyi - 2xyj + y^2k$