Reg. No:....

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017

MA101: CALCULUS

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer All Questions and each carries 5 marks)

- 1. a) Test the convergence of $\sum_{k=1}^{\infty} \frac{99^k}{k!}$ (2)
 - b) Test the convergence of $\sum_{k=1}^{\infty} \frac{1}{3^{k}+1}$ (3)
- 2. a) Find the slope of the sphere $x^2+y^2+z^2=1$ in the y-direction at $(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3})$. (2)
 - b) Find the critical points of the function $f(x,y) = 2xy x^3 y^3$. (3)
- 3. a) Find the velocity at time $t=\pi$ of a particle moving along the curve

$$\vec{r}(t) = e^t \sin t \, i + e^t \cos t \, j + t \, k \,. \tag{2}$$

- b) Find the directional derivative of $f(x,y) = xe^y ye^x$ at the point P(0,0) in the direction of 5i 2j. (3)
- 4. a) Change the order of integration in $\int_0^1 \int_{y^2}^{\sqrt{2-y^2}} f(x,y) dx dy$. (3)
 - b) Find the area of the region enclosed by $y=x^2$ and y=x. (2)
- 5. a) Find the divergence of the vector field $f(x,y,z) = x^2y i + 2y^3z j + 3z k$. (2)
 - b) Find the work done by $\overrightarrow{F} = xy i + x^3 j$ on a particle that moves along the curve $y^2 = x$ from (0,0) to (0,1).
- 6. a) Using Green's theorem to evaluate $\int_C 2xy \ dx + (x^2 + x) \ dy$ where C is the triangle with vertices (0,0), (1,0) and (1,1).
 - b) Use Stoke's theorem to evaluate $\int_C \vec{F}$. dr where $\vec{F} = (x-2y)i + (y-z)j + (z-x)k$ and C is the circle $x^2+y^2=a^2$ in the xy plane with counter clockwise orientation looking down the positive z-axis. (3)

PART B

MODULE I (Answer Any Two Questions)

7. a) Test the convergence of the following series (5)

i)
$$\sum_{k=1}^{\infty} \frac{(k+4)!}{4!k! \cdot 4^k}$$
 ii) $\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1}\right)^k$

ii)
$$\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1} \right)^{k}$$

8. Use the alternating series test to show that the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(k+3)}{k(k+1)}$ converge. (5)

Find the Taylor's series of $f(x) = x \sin x$ about the point $x = \frac{\pi}{2}$. (5)

MODULE II (Answer Any Two Questions)

- 10. Find the local linear approximation L to $f(x,y) = \ln(xy)$ at P(1,2) and compare the error in approximating f by L at Q(1.01, 2.01) with the distance between P and Q. (5)
- 11. Show that the function $f(x,y) = 2 \tan^{-1} (y/x)$ satisfies the Laplace's equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0. \tag{5}$$

12. Find the relative minima of $f(x,y) = 3x^2-2xy+y^2-8y$. (5)

MODULE III (Answer Any Two Questions)

- 13. Find the unit tangent vector and unit normal vector to $\vec{r} = 4 \cos t i + 4 \sin t j + t k$ at $t = \frac{\pi}{2}$. (5)
- 14. Suppose a particle moves through 3- space so that its position vector at time t is $\vec{r} = t i + t^2 j + t^3 k$. Find the scalar tangential component of acceleration at the time t=1. (5)
- 15. Given that the directional derivative of f(x,y,z) at (3,-2,1) in the direction of 2i-j-2kis -5 and that $\|\nabla f(3, -2, 1)\| = 5$. Find $\nabla f(3, -2, 1)$. (5)

MODULE IV (Answer Any Two Questions)

16. Evaluate the integral $\int_0^4 \int_{\sqrt{y}}^2 e^{x^3} dxdy$ by reversing the order of integration. (5)

17. Evaluate
$$\int_0^1 \int_0^{y^2} \int_{-1}^z z \, dx \, dy$$
. (5)

18. Find the volume of the solid in the first octant bounded by the co-ordinate planes and the plane x+2y+z=6. (5)

MODULE V (Answer Any Three Questions)

- 19. Let $\vec{r} = xi + yj + zk$ and let $r = ||\vec{r}||$ and f be a differentiable function of one variable show that $\nabla f(r) = \frac{f'(r)}{r}\vec{r}$. (5)
- 20. Evaluate the line integral $\int_C \left[-y \, dx + x \, dy \right]$ along $y^2 = 3x$ from (3,3) to (0,0). (5)
- 21. Show that $\overrightarrow{F}(x,y) = (\cos y + y \cos x) i + (\sin x x \sin y) j$ is a conservative vector field. Hence find a potential function for it. (5)
- 22. Show that the integral \int_C $(3 x^2 e^y dx + x^3 e^y dy)$ is independent of the path and hence evaluate the integral from (0,0) to (3,2).
- 23. Find the work done by the force field $\vec{F} = xy \, i + yz \, j + xz \, k$ on a particle that moves along the curve $C: \vec{r}(t) = t \, i + t^2 \, j + t^3 \, k$ where $0 \le t \le 1$. (5)

MODULE VI (Answer Any Three Questions)

- 24. Use Green's theorem to evaluate the integral $\int_c (x \cos y \, dx y \sin x \, dy)$ where C is the square with vertices (0,0), $(\pi,0)$, (π,π) and $(0,\pi)$. (5)
- 25. Evaluate the surface integral $\int_{\sigma} \int z^2 ds$ where σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 3. (5)
- 26. Use divergence theorem to find the outward flux of the vector field $\overrightarrow{F} = 2x \ i + 3y \ j + z^2 \ k$ across the unit cube x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. (5)
- 27. Use Stoke's theorem to evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x-y) i + (y-z) j + (z-x)k$ and C is the boundary of the portion of the plane x+y+z=1 in the first octant. (5)
- 28. Use Stoke's theorem to evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = 2z \, i + 3x \, j + 5y \, k$ and C is the boundary of the paraboloid $x^2 + y^2 + z = 4$ for which $z \ge 0$ and C is positively oriented. (5)
