\qquad
\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017

MA101: CALCULUS

PART A

(Answer All Questions and each carries 5 marks)

1. a) Test the convergence of $\sum_{k=1}^{\infty} \frac{99^{k}}{k!}$
b) Test the convergence of $\sum_{k=1}^{\infty} \frac{1}{3^{k}+1}$.
2. a) Find the slope of the sphere $x^{2}+y^{2}+z^{2}=1$ in the y - direction at $\left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right)$.
b) Find the critical points of the function $f(x, y)=2 x y-x^{3}-y^{3}$.
3. a) Find the velocity at time $t=\pi$ of a particle moving along the curve

$$
\begin{equation*}
\vec{r}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} \sin \mathrm{t} i+\mathrm{e}^{\mathrm{t}} \cos \mathrm{t} j+\mathrm{t} k . \tag{2}
\end{equation*}
$$

b) Find the directional derivative of $f(x, y)=x e^{y}-\mathrm{ye}^{\mathrm{x}}$ at the point $\mathrm{P}(0,0)$ in the direction of $5 i-2 j$.
4. a) Change the order of integration in $\int_{0}^{1} \int_{y^{2}}^{\sqrt{2-y^{2}}} f(x, y) d x d y$.
b) Find the area of the region enclosed by $y=x^{2}$ and $y=x$.
5. a) Find the divergence of the vector field $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2} \mathrm{y} i+2 \mathrm{y}^{3} \mathrm{z} j+3 \mathrm{z} k$.
b) Find the work done by $\vec{F}=\mathrm{xy} i+\mathrm{x}^{3} j$ on a particle that moves along the curve $y^{2}=x$ from $(0,0)$ to $(0,1)$.
6. a) Using Green's theorem to evaluate $\int_{C} 2 x y d x+\left(x^{2}+x\right) d y$ where C is the triangle with vertices $(0,0),(1,0)$ and $(1,1)$.
b) Use Stoke's theorem to evaluate $\int_{C} \vec{F}$. dr where $\vec{F}=(\mathrm{x}-2 \mathrm{y}) i+(\mathrm{y}-\mathrm{z}) j+(\mathrm{z}-\mathrm{x}) k$ and C is the circle $x^{2}+y^{2}=a^{2}$ in the $x y$ plane with counter clockwise orientation looking down the positive z - axis.

PART B

MODULE I (Answer Any Two Questions)

7. a) Test the convergence of the following series
i) $\sum_{k=1}^{\infty} \frac{(k+4)!}{4!k!4^{k}}$
ii) $\sum_{k=2}^{\infty}\left(\frac{4 k-5}{2 k+1}\right)^{k}$
8. Use the alternating series test to show that the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(k+3)}{k(k+1)}$ converge.
9. Find the Taylor's series of $f(x)=x \sin x$ about the point $x=\frac{\pi}{2}$.

MODULE II (Answer Any Two Questions)

10. Find the local linear approximation L to $f(x, y)=\ln (x y)$ at $P(1,2)$ and compare the error in approximating f by L at $\mathrm{Q}(1.01,2.01)$ with the distance between P and Q .
11. Show that the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=2 \tan ^{-1}(y / x)$ satisfies the Laplace's equation

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0 \tag{5}
\end{equation*}
$$

12. Find the relative minima of $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$.

MODULE III (Answer Any Two Questions)

13. Find the unit tangent vector and unit normal vector to $\vec{r}=4 \cos t i+4 \sin t j+t k$ at $t=\frac{\pi}{2}$.
14. Suppose a particle moves through 3-space so that its position vector at time t is $\vec{r}=\mathrm{t} i+\mathrm{t}^{2} j+\mathrm{t}^{3} k$. Find the scalar tangential component of acceleration at the time $\mathrm{t}=1$.
15. Given that the directional derivative of $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ at $(3,-2,1)$ in the direction of $2 i-j-2 k$ is -5 and that $\|\nabla f(3,-2,1)\|=5$. Find $\nabla f(3,-2,1)$.

MODULE IV (Answer Any Two Questions)

16. Evaluate the integral $\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3}} d x d y$ by reversing the order of integration. (5)
17. Evaluate $\int_{0}^{1} \int_{0}^{y^{2}} \int_{-1}^{z} z d x d y$.
18. Find the volume of the solid in the first octant bounded by the co-ordinate planes and the plane $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=6$.

MODULE V (Answer Any Three Questions)

19. Let $\vec{r}=\mathrm{x} i+\mathrm{yj}+\mathrm{z} k$ and let $\mathrm{r}=\|\vec{r}\|$ and f be a differentiable function of one variable show that $\nabla f(r)=\frac{f^{\prime}(r)}{r} \vec{r}$.
20. Evaluate the line integral $\int_{C}[-y d x+x d y]$ along $y^{2}=3 x$ from $(3,3)$ to $(0,0)$.
21. Show that $\vec{F}(\mathrm{x}, \mathrm{y})=(\cos \mathrm{y}+\mathrm{y} \cos \mathrm{x}) i+(\sin \mathrm{x}-\mathrm{x} \sin \mathrm{y}) j$ is a conservative vector field. Hence find a potential function for it.
22. Show that the integral $\int_{C}\left(3 x^{2} e^{y} d x+x^{3} e^{y} d y\right)$ is independent of the path and hence evaluate the integral from $(0,0)$ to $(3,2)$.
23. Find the work done by the force field $\vec{F}=\mathrm{xy} i+\mathrm{yz} j+\mathrm{xz} k$ on a particle that moves along the curve $\mathrm{C}: \vec{r}(\mathrm{t})=\mathrm{t} i+\mathrm{t}^{2} j+\mathrm{t}^{3} k$ where $0 \leq \mathrm{t} \leq 1$.

MODULE VI (Answer Any Three Questions)

24. Use Green's theorem to evaluate the integral $\int_{c} \quad(x \cos y d x-y \sin x d y)$ where C is the square with vertices $(0,0),(\pi, 0),(\pi, \pi)$ and $(0, \pi)$.
25. Evaluate the surface integral $\int_{\sigma} \int z^{2} d s$ where σ is the portion of the cone $\mathrm{z}=\sqrt{x^{2}+y^{2}}$ between the planes $\mathrm{z}=1$ and $\mathrm{z}=3$.
26. Use divergence theorem to find the outward flux of the vector field $\vec{F}=2 \mathrm{x} i+3 \mathrm{y} j+\mathrm{z}^{2} k$ across the unit cube $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$.
27. Use Stoke's theorem to evaluate the integral $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=(\mathrm{x}-\mathrm{y}) i+(\mathrm{y}-\mathrm{z}) j+(\mathrm{z}-\mathrm{x}) k$ and C is the boundary of the portion of the plane $x+y+z=1$ in the first octant.
28. Use Stoke's theorem to evaluate the integral $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=2 \mathrm{z} i+3 \mathrm{x} j+5 \mathrm{y} k$ and C is the boundary of the paraboloid $x^{2}+y^{2}+z=4$ for which $z \geq 0$ and C is positively oriented.
