Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer all questions, each carries 3 marks.	Marks
1		Solve the initial value problem $xy' = y - 1$, $y(0) = 1$	(3)
2		Solve the following differential equation by reducing it to first order $xy'' = 2y'$.	(3)
3		Find the particular integral of $(D^2 + 3D + 2)y = 3$.	(3)
4		Find the particular integral of $y'' + y = \sin x$.	(3)
5		Obtain the Fourier series expansion for the function $f(x) = x$ in the range $-\pi <$	(3)
		$x < \pi$.	
6		Find the Fourier sine series of the function $f(x) = \pi x - x^2$ in the interval $(0, \pi)$	(3)
7		Form a partial differential equation by eliminating the arbitrary function in $xyz =$	(3)
		$ \emptyset(x+y+z) $	
8		Solve $r + s - 2t = e^{x+y}$.	(3)
9		Solve one dimensional wave equation for $k < 0$.	(3)
10		Solve $\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} - u = 0$, $u(x, 0) = 6e^{-3x}$ using method of separation of variables.	(3)
11		Find the steady state temperature distribution in a rod of length 30cm if the ends are	(3)
		kept at 20° C and 80° C.	
12		Write down the possible solutions of one dimensional heat equation.	(3)
		PART B	
		Answer six questions, one full question from each module.	
		Module I	
13	a)	Verify that the given functions $x^{\frac{3}{2}}$, $x^{-\frac{1}{2}}$ are linearly independent and form a basis of	(6)
		solution space of given ODE $4x^2y'' - 3y = 0$.	
	b)	Solve the boundary value problem:	(5)
		y'' - 10y' + 25y = 0, $y(0) = 1$, $y(1) = 0$.	
		OR	
14	a)	Find the general solution of $y'''' + 2y'' + y = 0$.	(6)
	b)	Find a fundamental set of solutions of $2t^2y'' + 3ty' - y = 0, t < 0$. Given that	(5)
		$y_1(t) = \frac{1}{t}$ is a solution.	
		Module II	
15	a)	Find the particular integral of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$.	(6)
	b)	Solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$ using method of variation of parameters.	(5)
		OR	
16	a)	Solve $x^2 y'' - xy' - 3y = x^2 \ln x$	(6)

b) Solve
$$y'''' - 2y''' + 5y'' - 8y' + 4y = e^x$$
. (5)

A2801

Module III

17	a)	Obtain the Fourier series expansion of $f(x) = x \sin x$ in the interval $(-\pi, \pi)$.	(6)
	b)	Find the half range sine series of $f(x) = k$ in the interval $(0, \pi)$.	(5)
		OR	

Module IV

19 a) Solve
$$\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 2 \sin(3x + 2y)$$
 (6)

b) Solve
$$x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$$

OR (5)

20 a) Form the PDE by eliminating
$$a, b, c$$
 from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (6)
(6)

b) Solve
$$(x + y)zp + (x - y)zq = x^2 + y^2$$
. (5)

Module V

A tightly stretched violin string of length 'a' and fixed at both ends is plucked at (10) its mid-point and assumes initially the shape of a triangle of height 'h'. Find the displacement u(x,t) at any distance 'x' and any time 't' after the string is released from rest.

OR

22 Solve the PDE
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
. (10)
Boundary conditions are $u(0,t) = u(l,t) = 0, t \ge 0$
Initial conditions are $y(x,0) = a \sin\left(\frac{\pi x}{l}\right)$ and $\frac{\partial y}{\partial t} = 0$ at $t = 0$.
Module VI

A rod, 30 cm long has its ends A and B kept at 20° C and 80° C respectively, until (10) the steady state conditions prevail. The temperature at each end is then suddenly reduced to 0° C and kept so. Find the resulting temperature function u(x,t) taking x=0 at A.

OR

A long iron rod with insulated lateral surface has its left end maintained at a (10) temperature 0° C and its right end at x=2, maintained at 100° C. Determine the temperature as a function of 'x' and 't' if the initial temperature is

 $u(x,0) = \begin{cases} 100x , & 0 < x < 1\\ 100 , & 1 < x < 2 \end{cases}$

Α