Reg. No.____

Α

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B. TECH DEGREE EXAMINATION, MAY 2017

MA 102: DIFFERENTIAL EQUATIONS

Max. Marks: 100

Duration: 3Hours

PART A

Answer all questions. 3 marks each.

- 1. Solve the initial value problem $y^{II} y = 0$, y(0) = 4, $y^{I}(0) = -2$
- 2. Show that e^{2x} , e^{3x} are linearly independent solutions of the differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0 \quad in -\infty < x < +\infty.$$
 What is its general solution?

- 3. Solve $\frac{d^3y}{dx^3} 4\frac{d^2y}{dx^2} + 5\frac{dy}{dx} 2y = 0$
- 4. Find the particular integral of $(D^2 + 4D + 1)y = e^x sin 3x$
- 5. Find the Fourier series of f(x)=x, $-\pi \le x \le \pi$
- 6. Obtain the half range cosine series of $f(x) = x^2$, $0 \le x \le C$
- 7. Form the partial differential equation from z = xg(y) + yf(x)
- 8. Solve (y z)p + (x y)q = (z x)
- 9. Write down the important assumption when derive one dimensional wave equation.
- 10. Solve $3u_x + 2u_y = 0$ with $u(x,0) = 4e^{-x}$ by the method of separation of variables.
- 11. Solve one dimensional heat equation when k > 0
- 12. Write down the possible solutions of one dimensional heat equation.

PART B

Answer six questions, one full question from each module.

Module I

13. a) Solve the initial value problem $y^{II} - 4y^1 + 13y = 0$ with y(0) = -1, $y^1(0) = 2$ (6)

b) Solve the boundary value problem
$$y^{II} - 10y^I + 25y = 0$$
, $y(0)=1,y(1)=0$ (5)
OR

14. a) Show that $y_1(x) = e^{-4x}$ and $y_2(x) = xe^{-4x}$ are solutions of the differential equation $\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$. Are they linearly independent? (6)

b) Find the general solution of $(D^4 + 3D^2 - 4)y = 0$. (5)

Module II

15. a) Solve
$$(D^3 + 8)y = sinx cosx + e^{-2x}$$
 (6)
b) Solve $y^{II} + y = tan x$ by the method of variation of parameters. (5)

OR

Page 1 of 2

B2A102

Α

16. a) Solve
$$x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = \frac{1}{x}$$
 (6)

b) Solve
$$(D^2 + 2D - 3)y = e^x \cos x$$
 (5)

Module III

17. a) Find the Fourier series of
$$f(x) = \begin{cases} -1 + x, -\pi < x < 0 \\ 1 + x, 0 < x < \pi \end{cases}$$
 (6)

b) Find the half range sine series of
$$f(x) = \begin{cases} x, \ 0 < x < 1 \\ 2 - x, \ 1 < x < 2 \end{cases}$$
 (5)

OR

18. a) Obtain the Fourier series of
$$f(x) = \begin{cases} -\frac{\pi}{4}, -\pi < x < 0\\ \pi/4, 0 < x < \pi \end{cases}$$
 (6)

b) Find the half range cosine series of f(x) = x, 0 < x < l (5)

Module IV

19. a) Solve
$$(D^2 - 2DD' + D'^2)z = e^{x+2y} + x^3$$
 (6)

b) Find the Particular Integral of
$$\frac{\partial^3 z}{\partial x^3} - 7 \frac{\partial^3 z}{\partial x^2 \partial y} - 6 \frac{\partial^3 z}{\partial y^3} = \sin(x + 2y)$$
 (5)

OR

20. a) Solve
$$(D^2 + D D' - 6D'^2)z = y sinx$$
 (6)

b) Solve $(m \ z - ny)p + (nx - lz)q = ly - m \ x$ (5)

Module V

21. Solve the one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with boundary conditions u(0,t) = 0, u(l,t) = 0 for all t and initial conditions $u(x,0) = f(x), \frac{\partial u}{\partial t}\Big|_{t=0} = g(x)$. (10)

OR

22. A sting of length 20cm fixed at both ends is displaced from its position of equilibrium, by each of its points an initial velocity given by $= \begin{cases} x, & 0 < x \le 10\\ 20 - x, & 10 \le x \le 20 \end{cases}$ the distance from one end. Determine the displacement at any subsequent time. (10)

Module VI

23. Derive one-dimensional heat equation.

OR

24. Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature 0°C, assuming that the initial temperature is $f(x) = \begin{cases} x, & 0 < x < L/2 \\ L-x, & L/2 < x < L \end{cases}$ (10)

(10)