Reg No.:_____ Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

S

Max.	Marks: 100 Duration: 3	Hour
PART A		
	Answer all questions, each carries 3 marks.	Mark
1	Solve the initial value problem $xy' = y - 1$, $y(0) = 1$	(3)
2	Solve the following differential equation by reducing it to first order $xy'' = 2y'$.	(3)
3	Find the particular integral of $(D^2 + 3D + 2)y = 3$.	(3)
4	Find the particular integral of $y'' + y = \sin x$.	(3)
5	Obtain the Fourier series expansion for the function $f(x) = x$ in the range $-\pi <$	(3)
	$x < \pi$.	
6	Find the Fourier sine series of the function $f(x) = \pi x - x^2$ in the interval $(0, \pi)$	(3)
7	Form a partial differential equation by eliminating the arbitrary function in $xyz =$	(3)
	$\emptyset(x+y+z)$	
8	Solve $r + s - 2t = e^{x+y}$.	(3)
9	Solve one dimensional wave equation for $k < 0$.	(3)
10	Solve $\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} - u = 0$, $u(x, 0) = 6e^{-3x}$ using method of separation of variables.	(3)
11	Find the steady state temperature distribution in a rod of length 30cm if the ends are kept at 20° C and 80° C.	(3)
12	Write down the possible solutions of one dimensional heat equation.	(3)

PART B

Answer six questions, one full question from each module.

Module I

- Verify that the given functions $x^{\frac{3}{2}}$, $x^{-\frac{1}{2}}$ are linearly independent and form a basis of 13 a) (6) solution space of given ODE $4x^2y'' - 3y = 0$.
 - b) Solve the boundary value problem:

$$y'' - 10y' + 25y = 0$$
, $y(0) = 1$, $y(1) = 0$.

(5)

- 14 a) Find the general solution of y'''' + 2y'' + y = 0. (6)
 - b) Find a fundamental set of solutions of $2t^2y'' + 3ty' y = 0$, t < 0. Given that (5) $y_1(t) = \frac{1}{t}$ is a solution.

- 15 a) Find the particular integral of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$. (6)
 - b) Solve $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$ using method of variation of parameters. (5)

- 16 a) Solve $x^2y'' xy' 3y = x^2 \ln x$ (6)
 - b) Solve $y'''' 2y''' + 5y'' 8y' + 4y = e^x$. (5)

Module III

17 a) Obtain the Fourier series expansion of $f(x) = x \sin x$ in the interval $(-\pi, \pi)$. (6)

b) Find the half range sine series of f(x) = k in the interval $(0, \pi)$. (5)

OR

18 a) Find the Fourier series of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $(0, 2\pi)$.

b) Find the half range sine series of $f(x) = e^x$ in (0,1). (5)

Module IV

19 a) Solve $\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 2 \sin(3x + 2y)$ (6)

b) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$ (5)

ΛR

20 a) Form the PDE by eliminating a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (6)

b) Solve $(x + y)zp + (x - y)zq = x^2 + y^2$. (5)

Module V

A tightly stretched violin string of length 'a' and fixed at both ends is plucked at (10) its mid-point and assumes initially the shape of a triangle of height 'h'. Find the displacement u(x,t) at any distance 'x' and any time 't' after the string is released from rest.

OR

Solve the PDE $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$. (10)

Boundary conditions are u(0,t) = u(l,t) = 0, $t \ge 0$

Initial conditions are $y(x, 0) = a \sin\left(\frac{\pi x}{l}\right)$ and $\frac{\partial y}{\partial t} = 0$ at t = 0.

Module VI

A rod, 30 cm long has its ends A and B kept at 20° C and 80° C respectively, until (10) the steady state conditions prevail. The temperature at each end is then suddenly reduced to 0° C and kept so. Find the resulting temperature function u(x,t) taking x=0 at A.

OR

A long iron rod with insulated lateral surface has its left end maintained at a temperature 0^{0} C and its right end at x=2, maintained at 100^{0} C. Determine the temperature as a function of 'x' and 't' if the initial temperature is

$$u(x,0) = \begin{cases} 100x, & 0 < x < 1 \\ 100, & 1 < x < 2 \end{cases}.$$
