\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2017

MA 102: DIFFERENTIAL EQUATIONS

Max. Marks: 100
Duration: 3Hours

PART A

Answer all questions. 3 marks each.

1. Solve the initial value problem $y^{I I}-y=0, y(0)=4, y^{I}(0)=-2$
2. Show that $e^{2 x}, e^{3 x}$ are linearly independent solutions of the differential equation $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$ in $-\infty<x<+\infty$. What is its general solution?
3. Solve $\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-2 \mathrm{y}=0$
4. Find the particular integral of $\left(D^{2}+4 D+1\right) y=e^{x} \sin 3 x$
5. Find the Fourier series of $\mathrm{f}(\mathrm{x})=\mathrm{x},-\pi \leq x \leq \pi$
6. Obtain the half range cosine series of $\mathrm{f}(\mathrm{x})=x^{2}, 0 \leq x \leq C$
7. Form the partial differential equation from $z=x g(y)+y f(x)$
8. Solve $(y-z) p+(x-y) q=(z-x)$
9. Write down the important assumption when derive one dimensional wave equation.
10. Solve $3 u_{x}+2 u_{y}=0$ with $u(x, 0)=4 e^{-x}$ by the method of separation of variables.
11. Solve one dimensional heat equation when $\mathrm{k}>0$
12. Write down the possible solutions of one dimensional heat equation.

PART B

Answer six questions, one full question from each module.

Module I

13. a) Solve the initial value problem $y^{I I}-4 y^{1}+13 y=0$ with $y(0)=-1, y^{1}(0)=2$
b) Solve the boundary value problem $y^{I I}-10 y^{I}+25 y=0, \mathrm{y}(0)=1, \mathrm{y}(1)=0$

OR

14. a) Show that $y_{1}(x)=e^{-4 x}$ and $y_{2}(x)=x e^{-4 x}$ are solutions of the differential equation $\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+16 y=0$. Are they linearly independent?
b) Find the general solution of $\left(D^{4}+3 D^{2}-4\right) y=0$.

Module II
15. a) Solve $\left(D^{3}+8\right) y=\sin x \cos x+e^{-2 x}$
b) Solve $y^{I I}+y=\tan x$ by the method of variation of parameters.

OR

16. a) Solve $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d 2 y}{d x 2}+2 y=\frac{1}{x}$
b) Solve $\left(D^{2}+2 D-3\right) y=e^{x} \cos x$

Module III

17. a) Find the Fourier series of $f(x)=\left\{\begin{array}{c}-1+x,-\pi<x<0 \\ 1+x, 0<x<\pi\end{array}\right.$
b) Find the half range sine series of $\mathrm{f}(x)=\left\{\begin{array}{c}x, 0<x<1 \\ 2-x, 1<x<2\end{array}\right.$

OR

18. a) Obtain the Fourier series of $f(x)=\left\{\begin{array}{c}-\frac{\pi}{4},-\pi<x<0 \\ \pi / 4,0<x<\pi\end{array}\right.$
b) Find the half range cosine series of $f(x)=x, 0<x<l$

Module IV

19. a) Solve $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=e^{x+2 y}+x^{3}$
b) Find the Particular Integral of $\frac{\partial^{3} z}{\partial x^{3}}-7 \frac{\partial^{3} z}{\partial x^{2} \partial y}-6 \frac{\partial^{3} z}{\partial y^{3}}=\sin (x+2 y)$

OR

20. a) Solve $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \sin x$
b) Solve $(m z-n y) p+(n x-l z) q=l y-m x$

Module V

21. Solve the one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(0, t)=0, u(l, t)=0$ for all t and initial conditions $\left.u(x, 0)=f(x), \frac{\partial u}{\partial t}\right\}_{t=0}=$ $g(x)$.
(10)

OR

22. A sting of length 20 cm fixed at both ends is displaced from its position of equilibrium, by each of its points an initial velocity given by $=\left\{\begin{array}{l}x, \quad 0<x \leq 10 \\ 20-x, 10 \leq x \leq 20\end{array}\right.$, x being the distance from one end. Determine the displacement at any subsequent time.

Module VI

23. Derive one-dimensional heat equation.

OR

24. Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature $0^{\circ} \mathrm{C}$, assuming that the initial temperature is

$$
f(x)=\left\{\begin{array}{cc}
x, & 0<x<L / 2 \tag{10}\\
L-x, & L / 2<x<L
\end{array}\right.
$$

