Reg No.:

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100

PART A

Duration: 3 Hours

Answer all questions, each carries 3 marks

1	Find a general solution of the ordinary differential equation $y'' + y = 0$	(3)
2	Find the Wronskian of $e^x \cos 2x$ and $e^x \sin 2x$	(3)
3	Find the particular integral of the differential equation $y'' + y = cosh5x$	(3)
4	Using a suitable transformation, convert the differential equation.	
	$(3x+2)^2y'' + 5(3x+2)y' - 3y = x^2 + x + 1$ into a linear differential	(3)
	equation with constant coefficients.	
5	If $f(x)$ is a periodic function of period 2 <i>L</i> defined in $[-L, L]$. Write down Euler's	(3)
	Formulas a_0 , a_n , b_n for $f(x)$.	(3)
6	Find the Fourier cosine series of $f(x) = x^2$ in $0 \le x \le c$.	(3)
7	Find the partial differential equation of all spheres of fixed radius having their	(3)
	centres in xy-plane.	(5)
8	Find the particular integral of $r + s - 2t = \sqrt{2x + y}$.	(3)
9	Write any three assumptions involved in the derivation of one dimensional wave	(2)
	equation.	(3)
10	Solve $x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$ using method of separation of variables.	(3)
11	Find the steady state temperature distribution in a rod of 30 cm having its ends at	(2)
	20 [°] C and 80 [°] C respectively.	(3)
12	Write down the possible solutions of the one dimensional heat equation.	(3)

PART B

Answer six questions, one full question from each module

Module 1

13 a) Solve the initial value problem y'' + 4y' + 5y = 0, y(0) = 2, y'(0) = -5. (5)

b) Find a basis of solutions of the ODE $(x^2 - x)y'' - xy' + y = 0$, if $y_1 = x$ is a (6)

Page ${\bf 1}$ of ${\bf 3}$

S2035

solution.

OR

- 14 a) Reduce to first order and solve $y'' + (1 + \frac{1}{y})(y')^2 = 0$ (5)
 - b) Solve the initial value problem 9y'' 30y' + 25y = 0, y(0) = 3, y'(0) = 10. (6)

Module 1I

- 15 a) Solve $y'' 2y' + 5y = e^{2x}sinx$. (5)
 - b) Using method variation of parameters solve y'' + 4y = tan2x (6)

OR

- 16 a) Solve $x^3y''' + 3x^2y'' + xy' + y = x + \log x$ (5)
 - b) Solve using method of variation of parameters $y'' 2y' + y = \frac{e^x}{x}$ (6)

Module 1II

17 Find the Fourier series of periodic function $f(x) = \begin{cases} -x, -1 \le x \le 0\\ x, 0 \le x \le 1 \end{cases}$ (11) 2. Hence prove that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.

OR

18 Find the Fourier series of periodic function $f(x) = x \sin x$, $0 < x < 2\pi$ with period 2π . (11)

Module 1V

- 19 a) Solve $p 2q = 3x^2 \sin(y+2x)$. (5)
 - b) Solve $r + s 6t = y \sin x$. (6)

OR

- 20 a) Solve x(y z)p + y(z x)q = z(x y). (5)
 - b) Solv $(D^2 2DD 15D^2) = 12xy.$ (6)

Module V

21 A tightly stretched string of length L is fixed at both ends. Find the displacement u(x,t) if the string is given an initial displacement f(x) and an initial velocity g(x). (10)

OR

A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $u = v_0 sin^3 \left(\frac{\pi x}{l}\right), 0 \le x \le l$. If it is released from rest from this position, find the displacement function u(x, t) (10)

S2035

Module VI

23 The ends A and B of a rod of length L are maintained at temperatures 0^{0} C and 100^{0} C respectively until steady state conditions prevails. Suddenly the temperature at the end A is increased to 20^{0} C and the end B is decreased to 60^{0} C. (10) Find the temperature distribution in the rod at time t.

OR

Find the temperature distribution in a rod of length 2 m whose end points are maintained at temperature zero and the initial temperature is $f(x) = 100(2x-x^2), 0 \le x \le 2$ (10)
