\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 SECOND SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS
Max. Marks: 100
Duration: 3 Hours
PART A
Answer all questions, each carries 3 marks

1 Find a general solution of the ordinary differential equation $y^{\prime \prime}+y=0$
2 Find the Wronskian of $e^{x} \cos 2 x$ and $e^{x} \sin 2 x$
3 Find the particular integral of the differential equation $y^{\prime \prime}+y=\cosh 5 x$
4 Using a suitable transformation, convert the differential equation.

$$
\begin{equation*}
(3 x+2)^{2} y^{\prime \prime}+5(3 x+2) y^{\prime}-3 y=x^{2}+x+1 \quad \text { into a linear differential } \tag{3}
\end{equation*}
$$

equation with constant coefficients.
If $f(x)$ is a periodic function of period $2 L$ defined in $[-L, L]$. Write down Euler's Formulas a_{0}, a_{n}, b_{n} for $f(x)$.
Find the Fourier cosine series of $f(x)=x^{2}$ in $0<x \leq c$.
7 Find the partial differential equation of all spheres of fixed radius having their centres in xy-plane.

Find the particular integral of $\mathrm{r}+\mathrm{s}-2 \mathrm{t}=\sqrt{2 x+y}$.
9 Write any three assumptions involved in the derivation of one dimensional wave equation.
10 Solve $x \frac{\partial u}{\partial x}-2 y \frac{\partial u}{\partial y}=0$ using method of separation of variables.
11 Find the steady state temperature distribution in a rod of 30 cm having its ends at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively.

12 Write down the possible solutions of the one dimensional heat equation.

PART B Answer six questions, one full question from each module

Module 1

13 a) Solve the initial value problem $y^{\prime \prime}+4 y^{\prime}+5 y=0, y(0)=2, y^{\prime}(0)=-5$.
b) Find a basis of solutions of the $\operatorname{ODE}\left(x^{2}-x\right) y^{\prime \prime}-x y+y=0$, if $\mathrm{y}_{1}=\mathrm{x}$ is a
solution.

OR

14 a) Reduce to first order and solve $y^{\prime \prime}+\left(1+\frac{1}{y}\right)\left(y^{\prime}\right)^{2}=0$
b) Solve the initial value problem $9 y^{\prime \prime}-30 y^{\prime}+25 y=0, y(0)=3, y^{\prime}(0)=10$.

Module 1I

15 a) Solve $y^{\prime \prime}-2 y^{\prime}+5 y=e^{2 x} \sin x$.
b) Using method variation of parameters solve $y^{\prime \prime}+4 y=\tan 2 x$

OR

16
a) Solve $x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}+x y^{\prime}+y=x+\log x$
b) Solve using method of variation of parameters $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$

Module 1II

17 Find the Fourier series of periodic function $f(x)=\left\{\begin{array}{c}-x,-1 \leq x \leq 0 \\ x, 0 \leq x \leq 1\end{array}\right.$ with period
2. Hence prove that $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \ldots=\frac{\pi^{2}}{8}$.

OR

18 Find the Fourier series of periodic function $f(x)=x \sin x, 0<x<2 \pi$ with period 2π.

Module 1V

19 a) Solve $p-2 q=3 x^{2} \sin (y+2 x)$.
b) Solve $r+s-6 t=y \sin x$.

OR

a) Solve $x(y-z) p+y(z-x) q=z(x-y)$.
b) $\operatorname{Solv}\left(D^{2}-2 D D^{\prime}-15 D^{2}\right) \mathrm{z}=12 \mathrm{xy}$.

Module V

21 A tightly stretched string of length L is fixed at both ends. Find the displacement $\mathrm{u}(\mathrm{x}, \mathrm{t})$ if the string is given an initial displacement $\mathrm{f}(\mathrm{x})$ and an initial velocity $\mathrm{g}(\mathrm{x})$.

OR

A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $u=v_{0} \sin ^{3}\left(\frac{\pi x}{l}\right), 0 \leq x \leq l$. If it is released from rest from this position, find the displacement function $u(x, t)$

Module VI

 The ends A and B of a rod of length L are maintained at temperatures $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevails. Suddenly the temperature at the end A is increased to $20^{\circ} \mathrm{C}$ and the end B is decreased to $60^{\circ} \mathrm{C}$. Find the temperature distribution in the rod at time t.
OR

Find the temperature distribution in a rod of length 2 m whose end points are maintained at temperature zero and the initial temperature is
$f(x)=100\left(2 x-x^{2}\right), 0 \leq x \leq 2$

