http://www.ktuonline.com

		Total Pages: 2	2
Re	g No	.: Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018	
C	ours	Course Code: MA204 e Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METH (AE, EC)	ODS
М	ax. N	Marks: 100 Duration: 3 I	Hours
		(Normal distribution table is allowed in the examination hall)	
		PART A	Mark
1	a)	Answer any two full questions, each carries 15 marks A random variable X has the following probability distribution:	(7)
ı	a)	$\begin{bmatrix} x & -2 & -1 & 0 & 1 & 2 & 3 \end{bmatrix}$	(7)
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Find: i) The value of k ii) Evaluate $P(X < 2)$ and $P(-2 < X < 2)$	
	h)	iii) Evaluate the mean of X The probability that a component is acceptable is 0.93. Ten components are picked	(8)
	b)	at random. What is the probability that:	(0)
		i) At least nine are acceptable ii) At most three are acceptable.	
2	a)	Suppose that the length of a phone call in minutes is an exponential random variable	(7)
-	,	with parameter $\lambda = \frac{1}{10}$. If someone arrives immediately ahead of you at a public	()
		i) More than 10 minutes ii) Between 10 and 20 minutes.	
	b)	For a normally distributed population, 7% of items have their values less than 35	.(8)
	Uj	and 89% have their values less than 63. Find the mean and standard deviation of the	.(0)
		distribution.	
3	a)	Fit a binomial distribution to the following data and calculate the theoretical	(8)
	-,	frequencies.	, ,
		x 0 1 2 3 4 5 6 7 8	
		f 2 7 13 15 25 16 11 8 3	
	b)	The time between breakdowns of a particular machine follows an exponential	(7)
		distribution, with a mean of 17 days. Calculate the probability that a machine breaks	/
		down in a 15 day period.	
		PART B	
Λ	9)	Answer any two full questions, each carries 15 marks The joint PDF of two continuous random variables X and Y is given by	(7)
-4	a)		(,,
		$f(x,y) = \begin{cases} kxy & 0 < x < 4, \ 1 < y < 5 \\ 0 & otherwise \end{cases}.$	
		Find: i) k ii) The marginal distributions of X and Y	
		iii) Check whether X and y are independent.	
	b)	A distribution with unknown mean μ has variance equal to 1.5. Use Central Limit	(8)
		Theorem to find how large a sample should be taken from the distribution in order	
		that the probability will be at least 0.95 that the sample mean will be within 0.5 of	
		the population mean.	

http://www.ktuonline.com

E480

- 5 a) The autocorrelation function for a stationary process X(t) is given by $R_{XX}(\tau) = (7)$ $9 + 2e^{-|\tau|}$. Find the mean value of the random variable $Y = \int_{\tau=0}^{2} X(t) dt$ and the variance of X(t).
 - b) A random process X(t) is defined by $X(t) = Y(t)\cos(\omega t + \theta)$ Where Y(t) is a (8) WSS process, ω is a constant and θ is a random variable which is uniformly distributed in $[0,2\pi]$ and is independent of Y(t). Show that X(t) is WSS.
- 6 a) Consider the random process $X(t) = A\cos(\omega t + \theta)$ where A and ω are constants (7) and θ is a uniformly distributed random variable in $(0,2\pi)$. Check whether or not the process is WSS.
 - b) The joint PDF of two continuous random variables X and Y is $f(x,y) = \begin{cases} 8xy, 0 < y < x < 1 \\ 0, & otherwise \end{cases}$ (8)
 - i) Check whether X and Y are independent ii) Find P(X + Y < 1)

PART C

Answer any two full questions, each carries 20 marks

- 7 a) The number of particles emitted by a radioactive source is Poisson distributed. The source (4) emits particles at a rate of 6 per minute. Each emitted particle has a probability of 0.7 of being counted. Find the probability that 11 particles are counted in 4 minutes.
 - Assume that a computer system is in any one of the three states: busy, idle and under repair, respectively, denoted by 0,1,2. Observing its state at 2 P. M. each day, the transition probability matrix is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.1 & 0.8 & 0.1 \\ 0.6 & 0 & 0.4 \end{bmatrix}$

Find out the third step transition probability matrix and determine the limiting probabilities.

- c) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute, find the probability that the interval between two consecutive arrivals is:
 - i) More than 1 minute ii) Between 1 minute and 2 minutes
 - iii) Less than or equal to 4minutes.

http://www.ktuonline.com

- 8 a) Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five subintervals (4)
 - b) Using Newton's forward interpolation formula, find y at x = 8 from the following (8)table: x: 0 5 10 15 20 25 11 14 18 24 32 у:
 - C) Using Euler's method, solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1 (8) taking step size h = 0.025.
- 9 a) The transition probability matrix of a Markov chain {X_n,n≥0} having three states (10) f 0.2 0.3 0.5 1

1, 2 and 3 is $P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 0.3 & 0.3 \end{bmatrix}$ and the initial probability distribution is

 $p(0) = [0.5 \ 0.3 \ 0.2]$. Find the following:

- i) $P\{X_2 = 2\}$ ii) $P\{X_3 = 3, X_2 = 2, X_1 = 1, X_0 = 3\}$.
- b) Using Newton-Raphson method, compute the real root of $f(x) = x^3 2x 5$ (5) correct to 5 decimal places.
- c) Using Lagrange's interpolation formula, find the values of y when x = 10 from (5) the following table:

x: 5 6 9 11 y: 12 13 14 16