No. of Pages: 3 E http://www.ktuonline.com ## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY ## FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2017 Branch: Computer Science and Engineering Stream(s): Computer Science and Engineering # Course Code & Name: 01CS6151 Data Warehousing & Mining (Elective I) Answer any two full questions from each part Limit answers to the required points. Max. Marks: 60 Duration: 3 hours #### PART A | 1. | a. | What are the basic steps in Knowledge discovery in databases (KDD)? | 6.5 | | | |----|----|---|-----|--|--| | | b. | A datacube C has n dimensions, and each dimension has exactly p distinct values in the base cuboid. Assume that there are no concept hierarchies associated with the dimensions. | 4 | | | | | | i. What is the maximum number of cells possible in the base cuboid? ii. What is the minimum number of cells possible in the base cuboid? iii. What is the maximum number of cells possible (including both base cells and aggregate cells) in the data cube, C? | | | | | | | iv. What is the minimum number of cells possible in the data cube, C? | | | | | 2. | a. | Briefly describe the different OLAP operations. | 5 | | | | | Ъ. | A popular data warehouse implementation is to construct a multidimensional database, known as data cube. Unfortunately, this may often generate a huge, yet very sparse multidimensional matrix. Present an example illustrating such a huge and sparse data cube. | | | | | 3. | a. | Differentiate between star schema and snowflake schema. | 6.5 | | | - II. Suppose that a data warehouse consists of the four dimensions, date, spectator, location, and game, and the two measures, count and charge, where charge is the fare that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its own charge rate. Draw a star schema diagram for the data warehouse. - With the help of an example describe why concept hierarchies are useful in data mining. 4 3 4 ## http://www.ktuonline.com #### PART B - 4. a. Why is naive Bayesian classification called "naive"? Briefly outline the major ideas of 6.5 naïve Bayesian classification. - Use single and complete link agglomerative clustering to group the data described by the following distance matrix. Show the dendrograms. | | A | В | С | D | |---|----|---------------------------|-----|-----| | A | OF | 1 | 4 | 5 | | В | | $\mathbf{O} = \mathbf{O}$ | 2 | 6 | | С | | | 0 4 | 3 | | D | | | | 0.5 | http://www.ktuonline.com - a. Differentiate between k-means and k-medoids algorithms that perform effective 4 clustering. - b. Consider the following data set for a binary classification. Calculate information gain for 6.5 each attribute and draw decision tree by selecting the best split. | Tid | Refund | Marital Status | Taxable income | Class | |-----|-------------|----------------|----------------|-------| | 1 | Yes | Single | 125K | No | | 2 | No Married | | 100K | No | | 3 | No Single | | 70K | No | | 4 | Yes Married | | 120K | No | | 5 | No | Divorced | 95K | Yes | | 6 | No Married | | 60K | No | | 7 | Yes | Divorced | 220K | No | | 8 | No | Single | 85K | Yes | | 9 | No Married | | 75K | No | | 10 | No | Single | 90K | Yes | - a. Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 5.5 clusters: - A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). - b. What are the issues faced by decision tree based classification algorithms? #### PART C - 7. a. Explain how the spatial data structures R-Tree and KD Tree differs? - b. With an example differentiate between Trie and suffix trees. - 8. a. Illustrate Data Distribution Algorithm (DDA) with the help of an example 6 - b. What are Hidden Markov Models or HMM's? a. Consider the following transactional database, with set of items I={I1, I2, I3, I4, I5}. Let minimum support is 40% and confidence is 60%. Find all frequent item sets using Apriori algorithm. | List of Items | |----------------------| | I_1, I_2, I_5 | | I_2, I_4 | | I_2, I_3 | | I_1, I_2, I_4 | | I_1, I_3 | | I_2, I_3 | | I_1, I_3 | | I_1, I_2, I_3, I_5 | | I_1, I_2, I_3 | | I_2, I_4, I_5 | | | b. Describe the spatial data mining primitives. http://www.ktuonline.com 3 http://www.ktuonline.com http://www.ktuonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से