No. of Pages: 3

## D

## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

## FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2017

Electronics and Communication Engineering

- 1.Applied Electronics And Instrumentation
  - 2. Telecommunication Engineering

## 01EC6105 Advanced Digital Signal Processing

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

Duration: 3 hours

#### PART A

 a. Consider the structure shown below with input transforms and filter responses as indicated.

Sketch the quantities  $Y_0(e^{j\omega})$ ,  $Y_1(e^{j\omega})$ ,  $Y_2(e^{j\omega})$  and interpret.



b. Implement a 2 band polyphase decomposition on

$$H(z) = \frac{2 + 3.1z^{-1} + 1.5z^{-2}}{1 + 0.9z^{-1} + 0.8z^{-2}}$$

5

http://www.ktuonline.com

3

6

4

5

5

4

4

## http://www.ktuonline.com

2. a. For the following multirate system develop an expression for x(n) as a function of y(n)



- b. Explain noble identities.
  How can the noble identities be used for efficient structures for decimator and interpolator? Give illustrations.
- a. Explain the polyphase implementation of Uniform Filter Bank. Sketch the analysis section
  of an M channel filter bank with IDFT block
  - b. A four channel analysis uniform DFT filter bank has a set of filter transfer functions

 $H_k(z)$ , k=0,1,2,3 and  $H_0(z)$  has polyphase components given as

$$\begin{array}{lll} E_0(z) = 1 + 3z^{-1} - 0.8z^{-2} & E_1(z) = 2 - 1.5z^{-1} - 3.1z^{-2} \\ E_2(z) = 4 - 0.9z^{-1} + 2.3^{-2} & E_3(z) = 1 + 3.7z^{-1} + 1.7z^{-2} \end{array}$$

- i) Determine  $H_0(z)$ ,  $H_1(z)$ ,  $H_2(z)$ ,  $H_3(z)$
- ii) If  $H_2(z)$  has the magnitude response given as sketch the same for  $H_0(z)$ ,  $H_1(z)$ ,  $H_3(z)$



- a. State and prove Heisenberg's uncertainty principle. Explain how it put restriction on spectral analysis of signals.
  - Explain the axioms of MRA

http://www.ktuonline.com

- a. Give the filter bank implementation of STFT.
  - Explain the 2 dimensional DWT decomposition of a 512x512 image. Give the filter bank structure. Explain the 2 dimensional DWT decomposition of a 512x512 image. Give the filter bank structure.

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये,

Paytm or Google Pay स

9

# http://www.ktuonline.com

6. a How is progressive encoding possible in a wavelet decomposed image? Given a DWT coefficient array for 3 levels on an image. Implement EZW or SPIHT algorithm for coding the image ( do atleast 2 dominant passes).

| 127 | <b>6</b> 9 | 24  | 73  | 13 | 5   | -8 | 5  |
|-----|------------|-----|-----|----|-----|----|----|
| -37 | -18        | -18 | 8   | -6 | 7   | 15 | 4  |
| 44  | -87        | -15 | 21  | 8  | -11 | 14 | -3 |
| 55  | 18         | 29  | -56 | 0  | -2  | 3  | 7  |
|     |            | L   |     |    |     |    |    |
| 34  | 38         | -18 | 17  | 3  | -9  | -2 | 1  |
| -27 | -41        | 11  | -5  | 0  | -1  | 0  | -3 |
| 6   | 17         | 5   | -19 | 2  | 0   | -3 | 1  |
| 32  | 26         | -7  | 5   | -1 | -5  | 7  | 4  |

#### PART C

| 7. a. | Explain the Yule Walker equations in the Autoregressive power spectral density estimate |                                                                                         |   |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---|--|--|--|--|
|       |                                                                                         | How can you estimate the parameters and give the corresponding power spectrum estimate? | 6 |  |  |  |  |
|       | b.                                                                                      | Explain LMS algorithm. Give application.                                                | 6 |  |  |  |  |
| 8. a. | How is Blackman and Tuckey method used in smoothening the periodogram?                  | 6                                                                                       |   |  |  |  |  |
|       | b.                                                                                      | State and prove Widrow Hopf equation for adaptive filtering.                            | 6 |  |  |  |  |
| 9.    | a.                                                                                      | Explain power spectrum estimation using window method.                                  | 4 |  |  |  |  |
|       | b.                                                                                      | Derive the relation between autocorrelation and spectral density.                       | 4 |  |  |  |  |
|       | c.                                                                                      | How can a linear predictor implemented using FIR filter with lattice structure?         | 4 |  |  |  |  |

http://www.ktuonline.com