C

attp://www.ktuonline.com

4

5

9

No. of Pages:2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2017

Electronics & Communication Engineering

Stream(s):

- 1. Microwave & Television Engineering
- 2. Signal Processing
- 3. Telecommunication Engineering

01EC6205: Advanced Digital Communication

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60 Duration: 3 hours

PART A

Consider the signal set given below:

$$S_1(t) = 2, \quad 0 \le t \le 3$$

 $S_2(t) = 2, \quad 0 \le t \le 1$
 $S_3(t) = -2, \quad 1 \le t \le 3$
 $S_4(t) = 2, \quad 0 \le t \le 2$

- Find the basis functions and Draw the constellation diagram.
- Represent each signal using the set of basis functions and find Euclidean distance.
- A BPSK system employs the signals:

$$S_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos 2\pi f_c t, \quad 0 \le t \le T_b$$

$$S_2(t) = 0$$

Where E_b is the bit energy and T_b is the bit duration.

Find the probability of error as a function of SNR as well as Euclidean distance.

Consider the signal:

$$S(t) = \begin{cases} \left(\frac{A}{T}\right)t \cos 2\pi f_c t, & 0 \le t \le T \\ 0, otherwise \end{cases}$$

http://www.ktuonline.com

	а.	Determine the impulse response of the matched filter for the signal.	3
	b.	Find the output of the matched filter at t=T	6
		PART B	
4.	a.	Prove the Nyquist theorem for zero ISI.	4
	b.	The binary sequence 10010110010 is the input to a precoder whose output is used to modulate a duobinary transmitting filter. Find the precoded sequence, the transmitted amplitude levels, the received signal levels and the decoded sequence.	5
5.		Obtain an optimum ML receiver for channels with ISI and AWGN.	9
6.		Derive the expression for the capacity of a nonideal linear filter channel and explain water filling method for power distribution.	9
		PART C	
7.	a.	Derive the equations for processing gain and jamming margin for DS spread spectrum.	6
	b.	A DS binary PSK spread spectrum signal has a processing gain of 500. What is the jamming margin against a continuous tone jammer if the desired error probability is 10-5.	6
8.	a.	Explain how a PN sequence is generated for spread spectrum applications.	6
	ъ.	Describe the performance of a RAKE demodulator	6
9		Derive the probability of error for a hinary digital communication system with	12

http://www.ktuonline.com

diversity.