1.

No. of Pages:2

A

http://www.ktuonline.com

3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2018

Branch: ELECTRONICS and COMMUNICATION

Stream(s):

1) SIGNAL PROCESSING

2) TELECOMMUNICATION ENGINEERING

Course Code & Name: 01EC6301 APPLIED LINEAR ALGEBRA

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

Duration: 3 hours

PART A

Define a Field, Give an example for a finite Field

	b.	Show that the set $L_p = \{ (a_1, a_2,), a_i \in \mathbb{R}, \Sigma \mid a_i \mid P < \infty \}$ is a vector space.	3
	c.	Let V be a vector space and U and W are subspaces of V. Define the sum of	3
		subspaces U+W. When will be the sum U+W is direct sum?	
		Express R ³ as direct sum of subspaces of R ³ .	
2.	a.	Find t such that the following vectors are linearly independent.	3
		$\{ [\cos(t), \sin(t)]^T, [-\sin(t), \cos(t)]^T \}$	
	b.	Prove that all bases in a finite dimensional vector space have the same number	3
		of vectors.	
	c.	Solve the following linear system of equations using Gauss elimination	3
		x+3y-4z = 11, $3x-2y+z = -2$, $x+y-2z = 1$	
3.	a.	Show that the subset W of \mathbb{R}^3 given by $W = \{[x_1, x_2, x_3] \text{ such that } x_1 + x_2 + x_3 = 0\}$	5
		is a subspace of R3. Find a basis of W.	
	b.	Let V be an n-dimensional vector space and $R = \{v_1, v_2, v_3,, v_n\}$ is a basis of	4
		V. Show that every vector in V can be expressed uniquely as a linear	
		combination of the basis vectors in R.	

PART B

- 4. a. Let T: R³ to R² is a linear transform defined by T(x,y,z) = (x+z, y+z).
 5 Find dimension of range of T and dimension of null space of T. Verify Rank-Nullity theorem.
 b. Let R = {(1, 1, -1), (2,0,1), (0, 2, -1)} and S = {(1, -1, 2), (1,0,1), (0, 2, 3)} be bases
 - of R³.Find R to S change of basis matrix.

2

2

8

8

http://www.ktuonline.com

- 2 State the properties of inner product for a vector space over C 5. 3 b. Find the L_1 norm and L_2 norm of the vector $\mathbf{x} = (1+2\mathbf{j}, 2-3\mathbf{j}, 1-\mathbf{j})$ 4 State and prove Triangular inequality. Let x = (1, 2, 1, 2) and y = (2, -3, 0, 2). Resolve the vector y into two orthogonal 2 6. components in which one is along with x. b. Define orthogonal subspaces of a vector space. What are the important 3 orthogonal subspaces associated with an mxn matrix A? c. Find the matrix representing the linear transform $T: \mathbb{R}^3$ to \mathbb{R}^3 defined by 4 T(xyz) = (x-y, y-z, z-x) with respect to the basis $B = \{ (1,1,0), (0,1,1), (1,0,1) \}$ PART C Determine the geometric multiplicity and algebraic multiplicity of the 6 7. eigenvalues of the matrix = $\begin{bmatrix} 0 \\ 0 \\ -4 \end{bmatrix}$ 6 b. Give Examples for the following
 - 1. Hermitian Matrix
 - 2. Unitary Matrix
 - 3. Orthogonal Matrix
 - 4. Normal Matrix
- 8. a. State Spectral Theorem

http://www.ktuonline.com

- b. Define positive definite matrix
- c. Let V be an n-dimensional vector space over C and T : V to V a linear transform with distinct eigenvalues $\{\lambda_1, \lambda_2, \ldots, \lambda_k\}$. Prove that the sum of geometric multiplicities of the eigenvalues is utmost n.
- 9. a. Find the pseudo inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ 0 & 2 \end{bmatrix}$
 - b. Prove that eigenvectors corresponding to the distinct eigenvalues of a matrix 4 are linearly independent.