No. of Pages: 2

http://www.ktuonline.com

3

3

3

3

3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M. TECH DEGREE EXAMINATION, APRIL/MAY 2018

Branch:

Electronics and Communication Engineering

Stream(s):

- 1. Microwave & Television Engineering
- 2. Telecommunication Engineering

Course Code & Name:

01EC6204 Antenna Theory and Design

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

Duration: 3 hours

PART A

1.	a.	Using Lorentz condition show that $\nabla^2 A + k^2 A = -\mu J$	3
	b.	Explain omega match	3
	c.	Calculate the Directivity of an antenna with field pattern given by	3
		$E = E_{\theta} = \frac{\mu}{4\pi r} e^{-jkr} \cos^2 \phi \sin^2 \theta , 0 \le \theta \le \pi, 0 \le \phi \le 2\pi$	٠
2.	a.	Derive Expression for far filed pattern , and directivity of a half wave dipole antenna	3
	b.	Explain the optimum design of Rhombic antenna	3
	c.	Derive expression for input impedance of a Folded dipole antenna	3
3.	a.	Derive expression for far filed pattern , radiation resistance and directivity of a general circular loop antenna	5
	b.	Design an axial mode helical antenna for directivity 28dBi for operating at 600MHz. Calculate the radiation resistance, HPBW,BWFN and bandwidth of the designed antenna.	4
		PART B	
1.	a.	Derive Halen's integral equation	3

b. Explain solution of Halen's integral equation using delta gap model.

c. Derive expression for far field pattern of an open ended wave guide

http://www.ktuonline.com

5.	a.	Derive expression for self and mutual impedance of couple dipole antennas	5
:	Ъ.	Derive expression for filed pattern of an Yagi -Uda antenna	4
6.	a.	Derive expression for far field pattern and directivity of a horn antenna.	3
	b.	Explain Horn design algorithm	3
	c.	Design a micro-strip patch antenna for 2.4Ghz. The patch substrate has a dielectric constant 2.2 with height 2.2mm http://www.ktuonline.com	3
		PART C	
7.	a.	Derive Rumsey Principle for frequency independent antennas.	6
	b.	Explain array design using Woodward-Lawson Frequency-Sampling Design	6
8.	a.	Derive general expression for array factor of non isotropic antennas.	4
	b.	Explain Butler Matrix Beam Forming	4
	c.	Explain design steps of a log periodic dipole antenna	4
9.	a.	Design a 5 element Dolph- Chebyshev array with peak side lobe level 22dB	4
	b.	Explain array design using Schelkunoff's zero placement method.	4
	c.	Derive expression for directivity of an end fire array.	4

http://www.ktuonline.com

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से