B

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2017 Electronics and Communication Engineering (Signal Processing)

01EC6304- Digital Image Processing

Max.Marks: 60

Duration: 3 hours

Answer any two questions from each Section SECTION-A (2×9)

(a) State and explain 2-D Sampling Theorem for band limited images.

(b) The image $f(x, y) = 4\cos 4\pi x \cdot \cos 6\pi y$ is ideally sampled with $\Delta x = \Delta y = 0.5$ and the

samples are passed through an ideal LPF with bandwidth $\left[\frac{1}{2\Delta x}, \frac{1}{2\Delta y}\right]$. What is the reconstructed

image?

(5)

II. For the 2×2 transform A and the image U, $A = \begin{bmatrix} \sqrt{3} & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$ and $U = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, calculate the

transformed image V and the basis images. Also represent the original image in terms of basis images.

http://www.ktuonline.com

(4)

- III. (a) For the image segment $I = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, compute the transform coefficients using
 - i. DFT
 - ii. Haar Transform

(4)

(b) Explain Homomorphic Filtering.

(5)

SECTION-B (2×9)

- IV. (a) Define the following
 - Point Spread function (PSF)
 - ii. Circulant matrices
 - iii. Block Circulant matrices

(3)

(b) Explain Image Segmentation using Region Growing.

(6)

V. Explain DCT based JPEG Image Compression standard. What are the advantages of JPEG-2000 standard over JPEG?

(9)

VI. (a) What are the basic steps in Canny Edge Detection Algorithm?

(3)

(b) Derive an expression for the frequency response of 2-D Discrete Wiener filter used for Image Restoration. (6)

(P.T.O)

SECTION-C (2×12)

- VII. (a) State and prove Fourier-Slice theorem.

 (b) Explain the following Morphological Algorithms

 i. Hole Filling

 ii. Thickening

 iii. Pruning

 (8)
- VIII. Derive an expression for Inverse Radon Transform and hence derive the Convolution Back-Projection Algorithm. http://www.ktuonline.com (12)
 - IX. (a) Prove the following duality relations in Mathematical Morphology.

$$(i) (A \ominus B)^c = A^c \oplus \widehat{B} \qquad (ii) (A \circ B)^c = A^c \bullet \widehat{B}$$

$$(6)$$

attp://www.ktuonline.com

(6)

- (b) Explain the following Morphological operations.
 - i. Closing
 - ii. Opening
 - iii. Hit-or Miss Transform

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से