B

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, MAY 2016

Electronics and Communication Engineering

(Signal Processing)

01EC6304- Digital Image Processing

Max.Marks:60

Duration: 3 hours

Answer any two questions from each Section

SECTION-I (2X9)

I.

- a. State and explain 2D sampling theorem for band limited images.
- b. An image $f(x,y) = 2cos2\pi(3x+4y)$ is ideally sampled at a rate $\xi_{xs} = \xi_{ys} = 5$. The reconstruction filter has the frequency response $H(\xi_1,\xi_2) = \begin{cases} 1/25, & -2.5 \le \xi_1, \xi_2 \le 2.5 \\ 0 & other wise \end{cases}$. Find the reconstructed image.
- II. Find the 2D DFT of an image segment $I = \begin{bmatrix} 4 & 2 & 6 & 10 \\ 6 & 3 & 9 & 15 \\ 8 & 4 & 12 & 20 \\ 6 & 3 & 9 & 15 \end{bmatrix}$ using 1D DFTs.

III.

http://www.ktuonline.com

- a. Compute the Hadamard Transform of an image segment $I = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
- b. Consider an 8 level 64X64 image with normalized gray levels in the range [0, 1]. The normalized histogram is given below. Perform histogram equalization and plot the equalized histogram

r _k	n_k	P(r _k)
0	790	0.19
$^{1}/_{7}$	1023	0.25
$^{2}/_{7}$	850	0.21
$^{3}/_{7}$	656	0.16
4/7	329	0.08
5/7	245	0.06
6/7	122	0.03
1	81	0.02

SECTION-II (2X9)

- IV. Derive an expression for the transfer function of a 2D discrete Wiener filter used for image restoration.
- V. Explain JPEG still picture compression standard.

VJ.

- a. What is a LOG filter? What is its advantage over Laplacian filter?
- b. Explain basic region growing algorithm for image segmentation.

SECTION- III (2X12)

VII.

a. Explain the following morphological operations.

i. Erosion

iii. Opening

ii. Dilation

iv. Closing

http://www.ktuonline.com

b. Prove the following relations in morphological operations.

i.
$$(A \ominus B)^c = A^c \oplus \hat{B}$$

ii.
$$(A \oplus B)^c = A^c \ominus \hat{B}$$

VIII.

- a. Define Radon transform of a 2D function f(x, y).
- b. Explain Filter Back -projection algorithm for image reconstruction.

IX.

- a. What is hit-and-miss transform? What are its applications?
- b. State and prove Fourier-slice theorem.
