9

9

3

6

9

9

Duration: 3 hours

No. of Pages:1

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, APRIL/MAY 2018

Branch: Electronics & Communication Stream(s):

- 1. Signal Processing
- 2. Microwave & Television Engineering
- 3. Telecommunication Engineering

Course Code & Name:

01EC6302, ESTIMATION AND DETECTION THEORY

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

http://www.ktuonline.com

PART A

 Consider the signal detection problem in which change in variance is used for Hypothesis testing.

> $H_0: x[n] \sim N(0, \sigma_0^2), n = 0, 1, ..., N-1$ $H_1: x[n] \sim N(0, \sigma_1^2), n = 0, 1, ..., N-1$

Derive the detection rule for Neyman-Pearson (NP) detector

Consider the multiple hypothesis testing problem

 $H_0: x[n] = -A + w[n], n = 0, 1, ..., N-1$

 $H_1: x[n] = w[n], n = 0, 1, ..., N-1$

 $H_2: x[n] = A + w[n], n = 0, 1, ..., N-1$

where w[n] is white Gaussian noise with variance σ 2 . Find the detection rule for minimum probability of error detector.

Consider the detection problem of DC level in noise with unknown variance.

 $H_0: x[n] = w[n], n = 0, 1, ..., N-1$

 $H_1: x[n] = A + w[n], n = 0, 1, ..., N - 1.$

A is known and A > 0. Derive Generalized Likelihood Ratio Test (GLRT) for the for the detection problem

PART B

- a Define unbiased estimator. Give an example.
 - b Give the expression for Cramer- Rao Lower bound foe vector parameter estimation. In this context, explain the regularity condition to be satisfied by the PDF $p(x, \theta)$ for the existence of Cramer-Rao bound. Also, define Fisher information matrix.
- 5. Observed data samples { x[0], x[1], ...,x[N-1]} are IID under Laplacian PDF $p(x[n],\mu) = 1/2 \exp(-|x[n]-\mu|)$. Find Best Linear Unbiased Estimator (BLUE) of the mean μ .
- We observe N IID data samples from Gaussian PDF with unit variance and unknown mean. Obtain maximum likelihood estimator (MLE) for the unknown parameter.
- PART C

 5. Show that Wiener filter can be used for predicting the data sample x[n] from N-1 previous observations {x[n-1}, x[n-2],, x[n-N+1]}. Derive the expression for Wiener filter coefficients.
- 8. Consider the scalar state equation s[n] = a s[n-1] + u[n], and scalar observation equation x[n] = s[n] + w[n] where u[n] is zero mean Gaussian noise with independent samples with variance σ^2_u and w[n] is zero mean Gaussian noise with independent samples with variance σ^2_w . Derive the expression for Kalamn Gain for estimating s[n] from x[n].
- Discuss the applications of matched filter Estimators in Communication receivers.

12