1.

No. of Pages:1

Δ

9

http://www.ktuonline.com

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, APRIL/MAY 2018

Branch: Electronics & Communication

Stream(s):

1. Signal Processing

Derive Neyman-Pearson Theorem

- 2. Microwave & Television Engineering
- 3. Telecommunication Engineering

Course Code & Name:

01EC6302, ESTIMATION AND DETECTION THEORY

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60 Duration: 3 hours

PART A

2.		Find the MAP decision rule for	9
		$H_0: x[0] \sim N(0,1)$	
		$H_1: x[0] \sim N(0,2)$	
		if $P(H_0)=1/2$ and also if $P(H_0)=3/4$. Sketch the decision regions.	
3.		Consider the detection problem of deterministic signal $s[n]$, $n=0,1,,N-1$ embedded in correlated noise $w[n]$, $n=0,1,,N-1,w \sim N(0,C)$. Derive a matched filter receiver for the detection.	9
		PART B	
4.		If $x[n]=A+w[n]$, for $n=0,1,,N-1$ are observed and $w=[w[0],,w[N-1]] \sim N(0,C)$, find Cramer-Rao lower bound of A.	9
5.		Sinusoidal signal $s[n] = A \cos(2\pi f_0 n + \Phi)$ unknown amplitude A, A > 0, and unknown	9
		phase is embedded in noise. Find the least square estimate for A and Φ .	
6.		Consider the data $x[n] = Ar^n + w[n]$, $n = 0,1,$, N-1, where A is the parameter to be estimated, r is a known constant and $w[n]$ is zero mean white noise with variance σ^2 . The parameter A is modeled as a random variable with mean μ_A and variance σ^2_A and	9
		is independent of w[n]. Find the LMMSE estimator of A.	
		PART C	
7.		Consider the estimation of desired signal $d(n)$ based on an excitation $x(n)$ where $d(n)$ and $x(n)$ are assumed to be real valued stationary process. Derive the expression for Wiener filter tap weights $w=[w_0w_1w_{N-1}]$ which minimize the estimation error	12
		e[n] = d[n]-y[n], where $y[n]$ is the output of the Wiener filter.	
8.		Discuss the applications of Kalman filtering in image processing.	12
9.	а	Discuss the applications of Maximum Likelihood Estimation in Communication receivers.	6
	b	Discuss the applications of Wiener filter in speech processing and image processing.	6