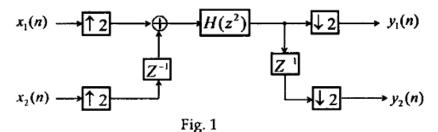
No. of Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, APRIL/MAY 2018

Branch: Electronics and Communication Engineering

Stream: Signal Processing


Course Code & Name: 01EC6306 Multirate Systems and Wavelets

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

PART A

Analyze the structure of Fig. 1. Show that the system is time invariant and 9
determine the transfer functions from each input to each output.

- Explain two-channel Quadrature Mirror Filter (QMF) bank. What are the common errors created in the QMF bank? Derive the conditions for an alias free response for a two-channel QMF bank.
- a. Derive the frequency domain representation of an M-fold down sampler and an L-fold up-sampler.
 - b. The analysis filters of a three-channel QMF bank are given by

$$[H_0(z) \ H_1(z) \ H_2(z)] = [z^{-2} \ z^{-1} \ 1] \begin{bmatrix} 2 & 4 & 1 \\ -1 & 4 & -2 \\ 2 & -1 & 2 \end{bmatrix}$$

Determine the synthesis filters for implementing a perfect reconstruction filter bank.

PART B

a. State Heisenberg's uncertainty principle.

2

9

5

nttp://www.ktuonline.com

C

Duration: 3 hours

6

12

http://www.ktuonline.com

- b. Calculate 2-level Haar Wavelet decomposition of the following sequence 7
 [4, 2, 6, -2, 4, 6, 2, 2]. Now retain all coefficients whose magnitude is greater than one and do inverse decomposition to reconstruct the signal. Calculate mean square error.
- For 6-tap Daubechies wavelet system, derive the various equations that must
 be satisfied by considering the different restrictions on filter coefficients.
- 6. Consider f(t) to be a triangular waveform as defined below. Express f(t) in 9 terms of f(2t) and its translates.

$$f(t) = \begin{cases} t & ; & 0 \le t \le 1 \\ 2 - t & ; & 1 \le t \le 2 \\ 0 & ; & Otherwise \end{cases}$$

PART C

- Derive the Mallat Filterbank structure (Analysis & Synthesis) for a Biorthogonal 12
 Wavelet System starting from the basic two scale equations.
- 8. a. State the relationship between different functional spaces in a biorthogonal 4 wavelet system. What is the motivation for designing biorthogonal systems?
 - b. Show that the vectors p_1 and p_2 along with the vectors d_1 and d_2 form a 2 biorthogonal system of vectors.

$$p_1 = (0,1), p_2 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), d_1 = \left(1, \frac{-\sqrt{3}}{2}\right), d_2 = \left(0, \frac{2}{\sqrt{3}}\right)$$

- c. Draw the Haar wavelet packet basis for three levels of decomposition.
- 9. For the seven-level decomposition shown below,

http://www.ktuonline.com

34	8	12	12
-8	8	5	2
2	-2	6	-3
-12	-12	0	0

Find the bit stream or labels generated by the Embedded Zerotree Wavelet (EZW) coder, after three steps of multiple pass procedure.