No. of Pages: 2

http://www.ktuonline.com

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2017

Electronics and Communication Engineering

Signal Processing

01EC 7315: Computer Vision

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60 Duration: 3 hours

PART A

1.	a.	Explain in detail the steps for computing scale-invariant feature transform.	7			
	b.	Prove that difference of Gaussian (DOG) function provides a close approximation to the scale-normalized Laplacian of Gaussian (LOG).	2			
2.	a.	Explain the k- means and mixture of Gaussians approaches for image segmentation. Highlight the difference between the two.	5			
	b.	What is Laplacian of an image and derive an appropriate kernel for the same. Explain how Laplacian can be used for edge detection.	4			
3.	a.	Explain the use of Hough transform for line detection.	5			
	b.	Write notes on camera intrinsic and extrinsic parameters.	4			
	PART B					
4.	a.	What is epipolar constraint?	2			
	b.	Detail the steps involved in projective reconstruction of 3D structure from photos taken by unknown camera.	7			
5.	a.	What is aperture problem in optical flow?	2			

http://www.ktuonline.com

	b.	Consider estimating optical flow given two images $I(x,y,t)$ and $I(x,y,t+1)$ derive the brightness constancy constraint. Given an initial guess for the optical flow vectors, derive a linear system of equations to update the same.	7
6.	a.	Define fundamental matrix and essential matrix.	3
	b.	Explain triangulation and bundle adjustment in reference to structure from motion.	6
		PART C	
7.	a.	Given reflectance map and a single image, explain a method to obtain surface normals corresponding to real 3D scene that is imaged.	7
	b.	Explain the shape from shading problem. Explain any one method to solve this problem.	5
8.	a.	Explain how texture and focus play a role in how we perceive shape. Explain how these cues can be used to reconstruct 3D geometry.	6
	b.	Mobile cameras use automated face detection. Explain any one face detection method that is currently in use.	6
9.	а.	Explain in detail the steps for pedestrian detection using histogram of oriented gradients.	6
	b.	Explain how Eigen faces can be used for face recognition in images.	6

http://www.ktuonline.com

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्य, Paytm or Google Pay से