Δ...

No. of Pages: 2

A

nttp://www.ktuonline.com

(9)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2018

Branch: Electrical & Electronics Engineering

(Common to all Streams)

01MA6021: ADVANCED MATHEMATICS AND OPTIMIZATION TECHNIQUES

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

Duration: 3 hours

PART A

- 1. a. Determine whether or not v = (2, -5, 3) in \mathbb{R}^3 is a linear combination of the vectors $v_1 = (1, -3, 2), v_2 = (2, -4, -1), v_3 = (1, -5, 7).$
 - b. Find a basis of the null space and column space of $A = \begin{bmatrix} 1 & 2 & 3 & 2 & 3 \\ 3 & 6 & 9 & 2 & 3 \\ 2 & 4 & 6 & 2 & 3 \\ 1 & 2 & 3 & 2 & 3 \end{bmatrix}$. (5)
- 2. a. Find an orthonormal basis for \mathbb{R}^3 from $u_1 = (1,1,1)$, $u_2 = (0,1,1)$ and $u_3 = (0,0,1)$. (4)
 - b. Find the singular value decomposition of $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$. (5)
- 3. a. Find the null space and nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x y, 0, x + y).
 - b. Find a QR factorization of A = $\begin{bmatrix} 5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5 \end{bmatrix}$ (5)

PART B

Use simplex method to solve the LPP:

Minimize $Z = x_1 - 3x_2 + 3x_3$

Subject to $3x_1 - x_2 + 2x_3 \le 7$, $2x_1 + 4x_2 \ge -12$, $-4x_1 + 3x_2 + 8x_3 \le 10$, $x_1, x_2, x_3 \ge 0$.

Solve the all integer programming problem by Gomory's cutting plane method: (9)
 Maximize Z = 4x₁ + 3x₂
 Subject to x₁ + 2x₂ ≤ 4, 2x₁ + x₂ ≤ 6, x₁, x₂ ≥ 0 and are integers.

(4)

(5)

http://www.ktuonline.com

6. a. Write the dual of the following LPP:

Maximize $Z = x_1 - x_2 + 3x_3$

Subject to $x_1 + x_2 + x_3 \le 10$, $2x_1 - x_3 \le 2$, $2x_1 - 2x_2 + 3x_3 \le 6$, $x_1, x_2, x_3 \ge 0$.

b. Solve the mixed integer programming problem graphically:

Maximize $Z = x_1 + x_2$

http://www.ktuonline.com

Subject to $3x_1 + 2x_2 \le 5$, $x_2 \le 2$, $x_1, x_2 \ge 0$ and x_1 is an integer.

PART C

- 7. a. Minimize $f(x,y) = 2x^2 + y^2 + 2xy y + x$ by using Fletcher-Reeves method. Take (6) (0,0) as the initial point.
 - b. By applying steepest descent method, Minimize $f(x, y) = 4x^2 4xy + 2y^2$ with initial (6) point (2,3). Use two iterations.
- 8. a. Describe Powell's method for solving the unconstrained minimization of a function of two variables.
 - b. Use dynamic programming to solve the following problem:
 Minimize Z = y₁² + y₂² + y₃²
 Subject to y₁ + y₂ + y₃ ≥ 15, y₁, y₂, y₃ ≥ 0.
- 9. a. Solve the following nonlinear programming problem using Kuhn-Tucker conditions: (6)
 Maximize Z = 3x₁² + 14x₁x₂ 8x₂²
 Subject to 3x₁ + 6x₂ ≤ 72, x₁, x₂ ≥ 0.
 - b. Give the necessary conditions and the modified linear programming problem (6) associated with the QPP:
 Maximize f(x₁, x₂) = 8x₁ + 10x₂ 2x₁² x₂²
 Subject to 3x₁ + 2x₂ ≤ 6, x₁ ≥ 0, x₂ ≥ 0.

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्य,

Paytm or Google Pay 🕏