APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTERM.TECH DEGREE EXAMINATION, DECEMBER 2018

Branch: ELECTRICAL & ELECTRONICS ENGINEERING

Stream: POWER CONTROL & DRIVES

Course Code & Name: 01EE6503 ADVANCED SIGNAL PROCESSING

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

Duration: 3 hours

PART A

1. a. Determine the following sequences using the DFT and IDFT

$$x_3(n) = x_1(n) \otimes x_2(n)$$

 $x_1(n) = [1,2,3,1]$, $x_2(n) = [4,3,2,2]$ (7 marks)

b. Check whether the following system $y(n) = x(n^2)$ is causal or not

(2 marks)

http://www.ktuonline.com

2. a. Find the Z transform including region of convergence for the following.

a)
$$x(n) = (n + 0.5)(\frac{1}{3})^n u(n)$$

b) $x(n) = (\frac{-1}{5})^n u(n) + 5(\frac{1}{2})^{-n} u(-n-1)$ (4 marks)

b. Compute the response of the system

$$y(n) = 0.7y(n-1) - 0.12y(n-2) + x(n-1) + x(n-2)$$
 to input x (n) = nu (n).

(5 marks)

http://www.ktuonline.com

- 3. a. Obtain a 8 point DFT of the sequence x(n)={1,2,2,2,1,0,0,0} using radix 2 DIF FFT Algorithm. (7 marks)
 - b. Find the stability of the system whose impulse response is : $h(n)=2^nu(n)$

(2 marks)

PART B

4. Design the band-pass linear phase FIR filter having cut-off frequencies of $\omega_{c1} = 1$ rad/sample and $\omega_{c2} = 2$ rad/sample. Obtain the unit sample response through following window.

$$\omega(n) = \begin{cases} 1 & for & 0 \le n \le 6 \\ 0 & elsewhere \end{cases}$$

Also, obtain the magnitude/frequency response.

(9 marks)

- a. Briefly explain about quantization errors introduced due to truncation and rounding. (6 marks)
 - b. Compare FIR and IIR filters

http://www.ktuonline.com

(3 marks)

6. a. Obtain H(z) using the Impulse invariant technique for an analog system function which is given by:

$$Ha(s) = \frac{1}{(s+0.5)(s^2+0.5s+2)}$$
 (6 marks)

b. Briefly explain about Discrete Fourier Transform Computations. (3 marks)

PART C

- a. Briefly explain the functional block diagram of TMS320F240 digital signal processor. (8 marks)
 - b. Differentiate between STFT and Wigner distribution. (4 marks)
- 8. a. Explain the sampling rate increase by an integer factor I and derive the input and output relationship in both time and frequency domains. (7 marks)
 - b. Briefly explain the design of Phase shifters (5 marks)

http://www.ktuonline.com

- a. Briefly explain the multistage implementation of sampling rate conversion
 (4 marks)
 - b. Briefly explain the direct form FIR filter structure with efficient implementation of Decimator & Interpolator. (8 marks)

http://www.ktuonline.com

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से