No. of Pages:4

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, JUNE/JULY 2018

Branch: Electrical & Electronics Engineering

Stream(s): Control Systems, Guidance And Navigation Control

Course Code & Name: 01EE6103 DIGITAL CONTROL SYSTEMS

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

Duration: 3 hours

PART A

- a. Explain the sampling process and loss of information and noise due to sampling
- •
- b. Obtain the z-transform of the function $f(k) = k^2 u(k)$, where, $u(k) = 1, k \ge 0, k < 0$
- 3

3

3

C

Find the inverse z transform of $\frac{2z^3 + z}{(z-2)^2(z-1)}$

3

nttp://www.ktuonline.com

- 2. a. Obtain the pulse transfer function of the system shown below:

 - b. Explain the mapping between s-plane and z-plane

4

c. For the following analog controller, find the transfer function of the corresponding digital controller using pole-zero matching method

2

$$G(s) = \frac{s+1}{s^2 + 5s + 6}, T = 0.01$$

3. a. For a unity feedback system, with sampling time T=1sec, open loop pulse transfer function is $G(z) = \frac{K(0.3679z + 0.2542)}{(z - 0.3679)(z - 1)}$. Determine the value of K for stability by use of Jury's

4

stability test. Also determine the frequency of oscillations at the output

b. Explain Schur-Cohn test to determine the conditions for stability of a second order system

2

c. Derive the expression for pulse transfer function of systems with ZOH

3

9

9

5

4

PART B

4. Consider the digital control system shown in figure. Design a digital controller D(z) such that the closed loop system has a damping ratio 0.5 and the number of samples per cycle of damped sinusoidal oscillation to be 0.8

5. For the system shown, find

http://www.ktuonline.com

- (i) Phase margin of the system when D(z) =1
- (ii) Design a unity dc gain phase lag compensator D (z) that yields a phase margin of approximately 45 degrees.

6. a. Obtain the discrete time equivalent of the system

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} -1 \\ 5 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 2 & -4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 6u(t)$$

with a sampling interval T=0.2s

b. Design a controller to place the poles at $-0.5 \pm j0.5$,0 for the system

$$\begin{bmatrix} x_{1}(k+1) \\ x_{2}(k+1) \\ x_{3}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -2 & -1 \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ x_{3}(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ x_{3}(k) \end{bmatrix}$$

Assume any additional data required

http://www.ktuonline.com

PART C

7. The frequency response of the system with open loop transfer function 12 $G(z) = \frac{0.368(z+0.177)}{(z-1)(z-0.368)}$ is given in table 1. T=0.15 sec.

Design a unity gain phase lag compensator D(z) that yields, a phase margin of approximately 45° and draw frequency responses of the uncompensated and compensated system

ω_{w}	ω	$[G(j\omega_w)]$	$ G(j\omega_w) _{dB}$	$\angle G(j\omega_{w})$
0.10	0.099	9.95473	19.96	-98.530
0.20	0.199	4.91192	13.82	-106.980
0.30	0.297	3.20693	10.12	-115.100
0.40	0.394	2.34103	7.38	-122.830
0.50	0.490	1.81474	5.17	-130.100
0.60	0.582	1.46124	3.29	-136.870
0.70	0.673	1.20853	1.64	-143.140
0.80	0.761	1.02011	0.17	-148.920
0.90	0.845	0.8753	-1.15	-154.240
1.00	0.927	0.7614	-2.36	-159.130
2.00	1.570	0.30058	-10.44	-190.880
3.00	1.965	0.1822	-14.78	-205.370
4.00	2.214	0.13244	-17.55	-212.260
5.00	2.380	0.10579	-19.51	-215.430
6.00	2.498	0.08942	-20.97	-216.610
7.00	2.585	0.07849	-22.10	-216.680
8.00	2.651	0.07073	-23.00	-216.110
9.00	2.704	0.06502	-23.73	-215.180

http://www.ktuonline.com

http://www.ktuonline.com

8.

$$G = \begin{bmatrix} 0 & 0 & -0.25 \\ 1 & 0 & 0 \\ 0 & 1 & 0.5 \end{bmatrix}, H = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$
 Assuming that the output y(k) is measurable,

8

attp://www.ktuonline.com

design a minimum order observer, such that the error will exhibit deadbeat response

- b. Explain separation principle
- 4 3
- Consider a multi output linear system described by the state model 9. x(k+1) = Fx(k) + Gu(k)

$$y(k) = Cx(k) - Du(k)$$

where,
$$F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & -1 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Check whether the system is observable

b. Consider the digital control system shown in figure where the plant is of first order and has a dead time of 2sec. The sampling period is assumed to be 1 sec or T=1. Design a digital PI controller such that the dominant closed loop poles have a damping ratio of 0.5 and the no. of samples per cycle of damped sinusoidal oscillation is 10. Obtain the response of the system to a unit step input. Also obtain the static velocity error constant K_v and find the steady state error in the response to a unit ramp input.

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये,

Paytm or Google Pay 社