\mathbf{B}

attp://www.ktuonline.com

No. of Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, July 2018

Branch: Electrical and Electronics Engineering Stream(s):

1. Control Systems

2. Guidance and Navigational Control

3. Electrical Machines

- 4. Power System and Control
- 5. Power Control and Drives

01EE6101: DYNAMICS OF LINEAR SYSTEMS

Duration: 3 hrs Max. Marks: 60

Answer any two full questions from each PART

Limit answers to the required points.

PARTA

- 1. (a) Derive the overall transfer function of a lag lead compensator network in polezero form.
 - (b) The open loop transfer function of a unity feedback system is $G(s) = \frac{\kappa}{(s(1+0.4s)(1+0.2s))}$. It is desired that for a unit step input, the steady state error has to be less than 0.1deg/sec, $PM \ge 45^{\circ}$, $GM \ge 20dB$. Design a suitable compensator.
- 2. (a) Realize a lag compensator using operational amplifiers. (3)
 - (b) Design a suitable compensator for the system whose open loop transfer function $G(s) = \frac{K}{(s(s+3)(s+6))}$ to have a $K_v = 80$ and $PM \ge 35^0$
- 3. (a) Explain the Ziegler-Nichols methods for tuning the PID controllers. (3)
 - (b) Consider a system with an open loop transfer function $G(s) = \frac{4}{s(s+0.5)}$. Design a cascade compensator to meet the following specifications, the damping ratio of the dominant closed loop pole is 0.5, the undamped natural frequency is 5rad/sec and $K_v = 80sec^{-1}$.

PART B

- 4. Obtain the controller canonical realization, controllability canonical realization, observer canonical realization and observability canonical realization for the system whose transfer function is given by $\frac{4s^3+25s^2+45s+34}{s^3+6s^2+10s+8}$.
- 5. (a) Derive the Bass-Gura formula for determining the state feedback gain matrix. (3)
 - (b) With the help of a suitable example analyze the stability of a system by pole (6) zero cancellation.

6. Solve $\dot{x}(t) = A(t)x(t) + B(t)u(t)$ where (9)

$$A(t) = \begin{pmatrix} 1 & e^{-t} \\ 0 & -1 \end{pmatrix}, \quad B(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

for a unit step input. Given, $x_0 = \begin{pmatrix} x_{10} \\ x_{20} \end{pmatrix}$

PART C

- (a) Explain the terms controllability index and observability index in MIMO systems.
 - (b) Design a reduced order observer for the system whose transfer function is given by $\frac{10}{s^2+\sqrt{10}s+10}$ so as to place the observer pole at s=-8.
- 8. (a) Write short note on observability in MIMO systems. (4)
 - (b) Given the system (8)

$$\dot{x} = Ax + Bu$$

where

$$A = \begin{pmatrix} 5 & 4 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end{pmatrix} and B = \begin{pmatrix} -2 & 0 \\ -1 & 1 \\ -4 & 0 \end{pmatrix}$$

Obtain the controllable form realization.

- 9. (a) Explain in detail the separation principle in the design of control systems. (4)
 - (b) Explain the direct transfer function design procedure of observer-controller. (8)

http://www.ktuonline.com