No. of pages: 2

http://www.ktuonline.com

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2017

Electrical Engineering

(Guidance and Navigational Control, Control Systems)

01EE6203 Introduction to Flight

Max. Marks: 60 Duration: 3 Hours

Answer any two full questions from each Part. Standard Atmospheric Tables can be used

Part A

1.

- a. What is meant by standard atmosphere? Derive the pressure and density variation in the gradient layer of the atmosphere.
- b. Define temperature, density and pressure altitudes and explain their significances in flight dynamics.
- c. An airplane is flying at a standard altitude of 5 km with a velocity of 270 m/s. At a point on the wing of the airplane, the velocity is 330 m/s. Calculate the pressure at this point.
 [4+3+2=9]

2.

- a. What is meant by stable atmosphere? Derive the stability conditions of the atmosphere.
- b. Define aerodynamic flow. Explain how aerodynamic flow is classified based on flow regimes.
- c. The pressure and temperature at certain unknown altitude are measured to be 71800 N/m² and -10⁰ C. Investigate the stability of the atmosphere between MSL and the unknown altitude. Also compute the unknown altitude. Assume a linear variation of temperature with altitude.

 [4+3+2=9]

3.

- a. Define Mach number. How do flight regimes classified based on Mach numbers?
- b. Consider an airplane flying with a velocity of 70 m/s at a standard altitude of 4 km. At a point on the wing of the airplane, the airflow velocity is 80 m/s. Calculate the pressure at this point. Assume incompressible flow.
- c. What is meant by boundary layer? What causes boundary layer separation? Distinguish between laminar and turbulent flows. [3+3+3=9]

Part B

4.

- a. Explain vorticity and circulation. How are they related?
- b. What is meant by aerodynamic heating? Discuss the consequences.
- c. State and explain Buckingham Pi theorem.

[3+3+3=9]

http://www.ktuonline.com

5.

- a. How lift is generated in an aircraft? What are the various factors that affect lift? Explain their effects.
- b. Sketch the lift curve, drag curve and lift-drag ratio curve. What is the importance of L/D ratio?
- c. What is meant by stalling? What are the causes of stall? Explain stall recovery procedure.

 [3+3+3=9]

6.

- a. With the help of a diagram explain the nomenclature of an airfoil.
- b. Give detailed account of NACA series of airfoils with typical examples. Also give their specifications.

Part C

7.

http://www.ktuonline.com

- a. What are aerodynamic coefficients? Discuss the effect of angle of attack on aerodynamic coefficients.
- b. Distinguish between centre of pressure and aerodynamic centre. How do they vary with angle of attack?
- c. Define Mach number, Critical Mach number and Drag divergence Mach number. What is Mach number independence? [4+4+4=12]

8.

- a. What is wind tunnel? What are the different types of wind tunnels? Explain the operation of any one type of wind tunnel with a suitable sketch.
- b. Write notes on the control surfaces of an aircraft.
- c. What is meant by high lift devices? What are the different types of high lift devices? Explain their actions.
 16+3+3=121

9.

- a. What is drag polar? Obtain an expression for drag polar and explain its feature with necessary sketches.
- b. Describe flow similarity and similarity parameters.
- c. Give an account of the general classification of aerospace vehicles. [4+4+4=12]