No. of Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2018

Branch: Electrical and Electronics Engineering

Stream(s):

- 1. Electrical Machines
- 2. Power Systems
- 3. Power System and Control
- 4. Power Control and Drives

Course Code & Name: 01EE6301: MODELLING OF ELECTRICAL MACHINES

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60 Duration: 3 hours

PART A

nttp://www.ktuonline.com

- a. Explain the term invariance of power as applied to electrical machines. Show
 the power invariance is maintained under three phase to two phase
 transformation.
 - b. Derive the expression for transformer and speed voltages in the armature along the quadrature axis. (3)
 - c. Draw the basic two pole machine representation for the following machines:
 i)DC Shunt Machine with Interpoles ii) Single phase AC series Machine. (2)
- a. Write the voltage equations for Kron's primitive machine in matrix form and explain Kron's Primitive Machine.
 - Derive electrical torque expression of Kron's primitive machine in terms of reluctance factor and show that no torque is produced by interaction between flux and current on the same axis.
- a. Explain transformations for currents between a rotating balanced three phase (a, b, c) winding to a pseudo stationary two phase (d,q) winding. Assume equal number of turns.

http://www.ktuonline.com

PART B

- a. Obtain the voltage and torque equation of DC series motor from its generalized mathematical model.
 - c. Derive the transfer function of separately excited DC motor relating the speed ω_r and armature terminal voltage V_t.
- 5. a. A separately excited DC generator gave a no load output voltage of 240 V at a speed of ω_r and a field current of 3 A. Find the generated emf per field ampere, $M_d \, \omega_r$. Also find the voltage V_2 as a function of time, when a 240 V is suddenly applied to the field winding with the armature running at constant speed ω_r . The other constants of the generator are r_f = 60 Ω , L_f =60 H, r_a =0.02 Ω , L_a =0.01H and R_L =0.38 Ω .
- a. Derive the power expression for salient pole synchronous machine in terms of fundamental and second harmonic component.
 - b. Draw the power angle characteristics of salient pole and cylindrical rotor synchronous machine.

PART C

 a. Derive the equivalent circuit of a poly phase induction motor with the help of its generalized mathematical model. (10)

http://www.ktuonline.com

- b. Draw the torque slip characteristics of double cage Induction motor. (2)
- 8. a. Draw the primitive machine diagram of double cage poly phase induction motor and obtain the voltage equation in matrix form. (7)
 - b. A 3 phase 400 V double cage Induction motor has per phase standstill leakage impedance of (2.0+j2.0) Ω and (0.5+j10) Ω for the top cage and bottom cages. Find the relative values of torques given by each cage at 5% slip. (5)
- a. Derive the electromagnetic torque equations from the primitive machine model
 of a single phase induction motor by applying cross field theory. (7)
 - b. Explain revolving field theory as applied to single phase Induction motor. (5)