nttp://www.ktuonline.com

В

No. of Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, APRIL/MAY 2018

Branch: ELECTRICAL & ELECTRONICS ENGINEERING

Stream(s): Control Systems, Guidance & Navigation Control

Course Code & Name: 01EE6104 & NONLINEAR CONTROL SYSTEMS

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

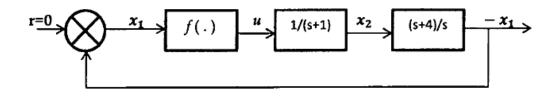
Duration: 3 hours

PART A

- 1. a. State and explain Poincare Bendixon Criteria for the existence of limit cycles. (4)
 - b. Whether the periodic orbits comply to the existence and uniqueness theorem.
 If so explain the theorem.
- 2. a. Define equilibrium point. List the classification of equilibrium points. (4)
 - b. For non-linear system having differential equation:

$$\ddot{y} - \left(0.1 - \frac{10}{3} \dot{y}^2\right) \dot{y} + y + y^2 = 0$$

Find all the singularities.


 Give an account of how Lipschitz condition simplified existence and uniqueness theorem. (9)

PART B

4. Construct a Lyapunov function for the following system using Variable Gradient Method: $\dot{x}_1 = -3x_2 - f(x_1)$

$$\dot{x}_2 = -x_2 + f(x_1)$$

Non-linearity $f(x_1) = g(x_1)$. x_1

(9)

(5)

5. a. State and explain Circle Criteria

(4)

b. Consider a non-linear system governed by the equation :

$$\dot{x_1} = -x_1 + 2x_1^2 x_2$$
$$\dot{x_2} = -x_2$$

A candidate for Lyapunov function is $V = P_{11} x_1^2 + P_{22} x_2^2$; $P_{11} > 0$ and $P_{22} > 0$ which is a positive definite function. Check the stability for the system. Sketch the region of stability.

(5)

 a. Find the sector [0, k] for which the given transfer function is absolutely stable using Popov Criteria.

$$G(s) = \frac{1}{(s+2)(s+3)}$$
 (6)

b. Write short notes on Kalman's Conjecture.

(3)

PART C

Find out a control law for the system :

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + u$$

using feedback linearization control technique after suitable applying suitable transformation.

(12)

http://www.ktuonline.com

8. a. Explain stabilization via linearization.

- (3)
- Apply back stepping to design a state feedback control law to globally stabilize the origin.

$$\dot{x_1} = x_2
\dot{x_2} = \mu_c \sin u \tag{9}$$

a. Write notes on Integral control via linearization

(6)

b. Write notes on Gain scheduling.

(6)

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य,

Paytm or Google Pay 🛪