http://www.ktuonline.com

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2015 ELECTRICAL & ELECTRONICS ENGINEERING

Stream: CONTROL SYSTEMS & ELECTRICAL MACHINES

01EE6303 - Power Electronic Circuits

Time: 3 hours

Answer any two full questions from each part.

Max marks: 60

PART-A (Module I and II)

- a. Explain the turn-on and turn-off process in a GTO with the help of appropriate (5) voltage and current waveforms.
 - b. A single phase ac voltage controller is connected to a load of R = 10Ω. Input (4) voltage is 230V, 50Hz. Firing angle delay is 30°. Determine the rms value of 3rd harmonic output voltage
- 2 a. Discuss the power loss in a diode during the reverse recovery transients. (4)
 - b. Explain with relevant diagrams and waveforms the working of a 2 stage (5) sequence control of 1- phase voltage controller with RL load.
- 3 a. Draw the power circuit diagram of a three phase fully controlled bridge rectifier (5) with RLE load and explain the inverter operation with voltage waveform.
 - b. Explain the conduction and switching losses in a IGBT. (4)

PART-B (Module III and IV)

- 4 a. Explain the operation of a Buck converter with circuit diagram and relevant (5) waveforms.
 - b. With circuit diagram and relevant waveforms explain the operation of flyback (4) converter. Derive the expression for average output voltage.
- 5 a. The data for a CUK converter are as follows; (5)

 $V_1 = 160 \text{ V}$ and frequency 25 kHz. For a duty cycle of 25%,

- (a) Determine Vc₁ and Vo;
- (b) The peak forward voltage the switch has to block;
- (c) (c) Sketch the waveforms of VL1 and VL2.

http://www.ktuonline.com

		http://www.ktuonline.com	
	b.	Explain the working of a push-pull type switched mode power supply.	(4)
6	a.	Explain the working of a Half bridge DC – DC switched mode converter with circuit diagram and waveforms.	(5)
	b.	With circuit diagram and necessary waveforms, explain the operation of a buck-boost	(4)
PART-C (Module V and VI)			
7	a.	With circuit diagram and relevant waveforms, explain the operation of single phase capacitor commutated current source inverter with inductive load.	(6)
	b. ;	Describe how the voltage is controlled in single phase inverter using sine triangle PWM.	(6)
8	a.	Explain current control scheme in inverter using hysteresis current controller.	(6)
	b.	Explain harmonic reduction by stepped wave inverters.	(6)
9	a.	Explain the different voltage control methods in single phase inverters.	(6)
	b.	Explain current control scheme in inverter using PWM current controller	(6)

http://www.ktuonline.com