No. of Pages: 3

A

http://www.ktuonline.com

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2017

Branch: Mechanical

Stream: Machine Design

Course Code & Name: 01MA6011 Special Functions, Partial Differential Finishions and Tensors

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

Duration: 3 hours

PART A

- 1. a. Evaluate $\iiint_V \nabla F dV$ where $F = (2x^2 3z)i 2xyj 4xk$ and V is bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4 (5 marks)
 - b. Show that $F = (x^2 + xy^2)i + (y^2 + yx^2)j$ is conservative and find its scalar potential. (4 marks)
- 2. a. Verify Stoke's theorem for $\mathbf{F} = (x^2 + y^2)\mathbf{i} 2xy\mathbf{j}$ taken round the rectangle bounded by the lines x = a, x = -a, y = 0 and y = b (6 marks)
 - b. A covariant tensor has components xy, $2y z^2$ and xz in rectangular coordinates. Find its covariant components in spherical coordinates. (3 marks)
- 3. a. Prove that (i) a symmetric tensor of order 2 has only $\frac{1}{2}n(n+1)$ different components and (ii) a skew symmetric tensor of order 2 has only $\frac{1}{2}n(n-1)$ different non-zero components (5 marks)
 - b. Find the components of the metric tensor and conjugate tensor in spherical coordinates (4 marks)

PART B

4. a. Convert the differential equation y''(x) - 3y'(x) + 2y(x) = 5sinx; y(0) = 1, y'(0) = -2 into an integral equation (4 marks)

Solve the integral equation

b.
$$y(x) = 3x^2 + \int_0^x y(t) . \sin(x - t) dt$$
 (5 marks)

http://www.ktuonline.com

- a. By the method of successive approximation solve the integral equation 5. $y(x) = 1 + x + \int_0^x y(t).(x - t)dt$ (3 marks)
 - b. Reduce to the canonical form the PDE

$$y^2u_{xx} - 2xyu_{xy} + x^2u_{yy} = \frac{y^2}{x}u_x + \frac{x^2}{y}u_y$$
 (6 marks)

a. Solve the IBVP using Laplace transform technique 6.

$$u_t = u_{xx}, 0 < x < 1, t > 0;$$

 $u(0,t) = 1, u(1,t) = 1, t > 0;$

$$u(x, 0) = 1 + \sin \pi x, 0 < x < 1$$
 (6 marks)

 $L(u_{tt}) = s^2 U(x, s) - su(x, 0) - u_t(x, 0)$ (3 marks) b. Prove that

PART C

- (a) Show that $(1 2xt + t^2)^{\frac{-1}{2}} = \sum_{n=0}^{\infty} t^n P_n(x)$ (7 marks) 7.
 - (b) Prove that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ (5 marks)

http://www.ktuonline.com

- (a) Prove that $sin(xCos\theta) = 2[J_1Cos\theta J_3cos3\theta + J_5cos5\theta \cdots]$ (4 marks) 8.

 - (b) Prove that $J_{-n}(x) = (-1)^n J_n(x)$ (4 marks) © Express the polynomial $x^4 + 3x^3 x^2 + 5x 2$ in terms of Legendre polynomials. (4 marks)

9. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the square mesh and boundary values as shown below

http://www.ktuonline.com

(12 marks)