http://www.ktuonline.com

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2015

Mechanical Engineering

(Machine Design)

01ME6105 Continuum Mechanics

Max. Marks: 60 Duration: 3 Hours

Answer any two full questions from each module.

Part A (Modules I & II) - Max marks:18

- 1. (a) Given a continuum, where the stress state is known at one point and is represented by the Cauchy stress tensor components $\sigma_{ij} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ Pa. find the principal stresses and principal directions (6 marks)
 - (b) Show that (i) $\delta_{3p}v_p = v_3$ (ii) $\delta_{3i}A_{ji} = A_{j3}$ (iii) $\delta_{i2}\delta_{j3}A_{ij} = A_{23}$ (3 marks)
- 2. (a) Prove the identity $\varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} \delta_{jn}\delta_{km}$ (5 marks)
 - (b) The Cauchy stress tensor at point P is given by $\sigma_{ij} = \begin{bmatrix} 5 & 6 & 7 \\ 6 & 8 & 9 \\ 7 & 9 & 2 \end{bmatrix}$ (iPa. Obtain the deviatoric and volumetric parts of the tensor.
- 3. (a) Prove the vector identity $u \times (v \times w) = (u, w)v (u, v)w$ (5 marks) (b) The stress state at one point is represented by the Cauchy stress components

$$\sigma_{ij} = \begin{bmatrix} \sigma & a\sigma & b\sigma \\ a\sigma & \sigma & c\sigma \\ b\sigma & c\sigma & \sigma \end{bmatrix}$$
. where a, b, c are constants and σ is the value of the stress.

Determine the constants such that the traction vector on the octahedral plane is zero.

(4 marks)

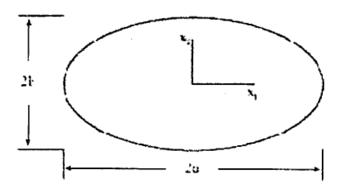
Part B (Modules III & IV) - Max marks:18

- 4. (a) Given the motion of a body to be $x_i = X_i + 0.2tX_2\delta_{Ii}$, for a temperature field given by $\theta = 2x_1 + (x_2)^2$, find the material description of temperature and rate of change of temperature of a particle, which at time t = 0 was at the place (0,1,0).
 - (5 marks)
 (b) Deduce the equilibrium equations from linear momentum principle. (4 marks)
- 5. (a) Obtain the infinitesimal strain tensor and the infinitesimal spin tensor for the following displacement field; $u_1 = x_1^2$, $u_2 = x_1x_2$, $u_3 = 0$ (5 marks)
 - (b) Prove the symmetry of stresses $\sigma_{ij} = \sigma_{ji}$ using principle of conservation of angular momentum (4 marks)

- (a) Obtain the Lagrangian and Eulerian forms of continuity equation. (4 marks)
 (b) The deformation of a body is given by u₁ = (3X₁² + X₂), u₂ = (2X₂² X₃), and u₃ = (4X₃² + X₁). Compute the vector into which the vector 10⁻³(1/3, 1/3, 1/3) passing through the point (1.1.1) in the reference configuration is deformed. (5 marks)
 Part C (Modules V & VI) Max marks:24
- 7. (a) From linear elastic constitutive relation for isotropic materials, deduce the strainstress relation $\varepsilon_{ij} = \frac{1+\nu}{E} \sigma_{ij} - \frac{\nu}{E} \sigma_{kk} \delta_{ij}$. (6 marks)
 - (b) Given an isotropic linear elastic material, whose elastic properties are E = 71 GPa, G = 26.6 GPa, find the strain tensor components and the strain energy density at the point in which the stress state, in Cartesian basis is represented by

$$\sigma_{ij} = \begin{bmatrix} 20 & -4 & 5 \\ -4 & 0 & 10 \\ 5 & 10 & 15 \end{bmatrix} GPa \tag{6 marks}$$

 Determine the stresses and the angle of twist for a solid elliptical shaft of the dimensions shown when subjected to end couples M_t. (12 marks)



http://www.ktuonline.com

9. Consider a special stress function having the form $\Phi = B_2x_1x_2 + D_4x_1x_3$. Show that this stress function may be adapted to solve for the stresses in an end-loaded cantilever beam shown in the sketch. Assume the body forces are zero for this problem.

(12 marks)

