${f E}$ 

## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

## FIRST SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2015

## Mechanical Engineering

(Machine Design)

# 01ME6107 Industrial Tribology

Max. Marks:60 Duration: 3 Hours

(Answer any two questions from Part A, Part B and Part C)

## Part A (Modules I and II)

- 1. (a) Explain the principle of working of a Taylor HobsenTalysurf.
  - (b) Explain the different methods of quantifying surface roughness.
- (a) Explain the origin of Micro/Nanotribology.
  - (b) Describe with figure the Atomic force microscope.
- 3. Discuss the various friction theories and write the merits and demerits.

 $(2 \times 9 = 18 \text{ Marks})$ 

#### Part B (Modules III and IV)

http://www.ktuonline.com

- Write in brief the various types of wear encountered in engineering surfaces under relative motion.
- 5. Derive Hagen Poiseuille equation applied to flow through a capillary tube.
- Derive Reynolds equation from basic principles and describe the physical meaning of each term.

 $(2 \times 9 = 18 \text{ Marks})$ 

### Part C (Modules V and VI)

- 7. A circular hydrostatic pad has a constant flow rate Q. The circular pad is supporting a load of W = 5000N. The outside disk diameter is 200 mm and the diameter of the circular recess is 100 mm. The oil viscosity is  $\mu = 0.005$  Ns/m<sup>2</sup>. The pad is operating with a clearance of 120  $\mu$ m.
  - a. Find the recess pressure, Pr.
  - b. Calculate the constant flow rate of the oil through the bearing to maintain the clearance.
  - c. Find the effective area of this pad.
  - d. Find the stiffness of the circular pad operating under the condition in this problem.

- 8. (a) Derive Petroff's equation from fundamentals.
  - (b) A radial hydrodynamic bearing has the following operational data:
    - i. Radial load = 3.5 kN
    - ii Journal diameter = 50 mm
    - iii Bearing length = 50 mm
    - iv Journal speed = 1500 rpm
    - v Radial clearance = 0.05 mm
    - vi Viscosity, mass density and specific heat = 25 cp, 900 kg/m<sup>3</sup> and 1700 J/kg °C.

Total oil flow is sufficient to carry the heat generated. Determine the following parameters.

- a. Coefficient of friction
- b. Power lost in friction
- Minimum oil film thickness
- d. Oil flow requirement and
- e. Rise in bearing temperature.
- 9. A 30s work cycle consists of the following two parts:

|                  | Part I | Part II |
|------------------|--------|---------|
| Duration (s)     | 10     | 20      |
| Radial load (KN) | 45     | 15      |
| Axial load (KN)  | 12.5   | 6.25    |
| Speed (rpm)      | 720    | 1440    |

For this application the static and dynamic load capacities of a single row deep groove ball bearing are 50 and 68KN respectively. Calculate the life of the bearing in hours.

 $(2 \times 12 = 24 \text{ Marks})$ 

http://www.ktuonline.com

http://www.ktuonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये,

Paytm or Google Pay 社