No. of Pages:2

Α

http://www.ktuonline.com

5

4

5

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, DECEMBER 2018

Branch: Mechanical Engineering

Stream(s):

1. Machine Design

2.

Course Code & Name: 01ME6102 Advanced Theory of Mechanisms

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60 Duration: 3 hours

PART A

- a. The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine linear velocity and acceleration of the midpoint of the connecting rod.
 - b. For the above problem, determine angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.
- a. Derive the two forms of Euler-Savary equation from the Hartmann's construction.
 - b. Find the inflection circle for motion of slider crank of Fig.1 and determine the instantaneous radius of curvature of path of coupler point C. $R_{AO2} = 2$ in. And $R_{BA} = 2.5$ in.

Fig.1

- 3. a. What is Bobillier's theorem? Show by neat illustration, how Bobillier's theorem is used to locate the inflection circle?
 - b. Find the inflection circle for the motion of coupler of a slider crank chain having the following specifications radius of crank = 5 cm, length of connecting rod = 7.5 cm. Crank makes an angle of 30 degree with line of stroke. Also find instantaneous radius of curvature of path of a coupler point located 2.5 cm from crank pin.

PART B

4. a. Derive four bar mechanism coupler curve equation

6

4

5

3

5

4

4

5

6

6

6

6

http://www.ktuonline.com

	b.	What do you mean by asymptotes of coupler curve?
5.	a.	State and prove Robert's law of cognate linkages
	b.	Show that any coupler curve of a four bar mechanism can be traced by an equivalent five bar mechanism.
6.	a.	Obtain relations for cam contact force and torque applied for eccentric cam systems in SHM from first principles. Also plot them along with displacement, velocity and acceleration against crank angle.
	b.	Derive relations for follower response considering effects of follower elasticity. Plot and compare the follower response with cam motion.
PART C		
7.	a.	Determine the proportions of four bar mechanism, by using three precision points, to generate $y = x^{1.5}$, where x varies between 1 and 4. Assume $\theta_S = 30^\circ$; $\Delta\theta = 90^\circ$; $\phi_S = 90^\circ$; and $\Delta\phi = 90^\circ$. Take length of the fixed link AD as 25 mm.
	b.	Design a four bar mechanism using graphical method to co-ordinate the input and output angles as follows: Input angles = 15°, 30° and 45°; Output angles = 30°, 40° and 55°.

 a. Derive an expression for transmission angle of a four bar mechanism in terms of link lengths. Determine the maximum and minimum transmission angles

http://www.ktuonline.com

b. The mechanism shown in Fig.2 has AoBo fixed and is driven by turning AoA. Find out geometrically the maximum and minimum transmission angles. AoBo = 6 cm, AoA = 4 cm, AB = 3 cm and BoB = 8 cm.

9. a. Derive relations for angular momentum of a rigid body in three dimensions 4
b. Derive relations for kinetic energy of a rigid body in three dimensions. How will they change for a rigid body with fixed point?
c. Derive the Euler's equations of motion.