http://www.ktuonline.com

No. of Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER M.TECH DEGREE EXAMINATION, APRIL/MAY 2018 Branch: MECHANICAL ENGINEERING

Stream(s): MACHINE DESIGN

Course Code & Name: 01ME6102, ADVANCED THEORY OF MECHANISMS

Answer any two full questions from each part Limit answers to the required points.

Max. Marks: 60

nttp://www.ktuonline.com

Duration: 3 hours

PART A (Module I & II)

a. For the mechanism shown below, the velocity of point B is 10 m/s (constant).
 Determine the velocity of different links (4 marks)

- b. Determine the coriolis component of acceleration for the mechanism. (1 mark)
- c. Determine the acceleration of different links. (4 marks)
- 2. a. Sketch any complex mechanism & explain why the mechanism is complex. (2 marks)
 - Derive the velocity and acceleration relationships for a slider crank mechanism using vector approach. (5 marks)
 - c. Explain inflection circle. (2 marks)
- 3. a. Derive the equation for the cubic of stationary curvature. (7 marks)
 - b. Discuss the situations where first and second Bobillier constructions are useful.

(2 marks)

http://www.ktuonline.com

PART B (Module III &IV)

a. Derive the equation for the coupler curve.

(6 marks)

- Show that the coupler curve has multiple points at each of its intersections with the circle of foci.
 (2 marks)
- Explain double points.

(1 marks)

- a. Explain Roberts Chebychev theorem. Draw a 6 bar and 5 bar cognates to a four bar mechanism. (5 marks)
 - b. Derive the equation for the contact force of an eccentric cam. (4 marks)
- a. Explain cross over shock

http://www.ktuonline.com

(1 marks)

b. Explain wind up in cams.

(1 marks)

c. A dwell rise cam has a rise of 30 mm and moves with cycloid motion for 130 ° cam rotation. The follower is assembled with a retaining spring with necessary pre compression. The stiffness of the spring is 50 N/mm. The equivalent mass and stiffness of the follower train are 0. 3 kg and 75 N/mm respectively. Determine the follower response when the cam rotates at 3000 r.p.m.

(7 marks)

PART C (Module V & VI)

7. a. Design a double lever mechanism to obtain the following input and output coordination. Input angles θ_{12} =45 ° cw, θ_{13} =80 ° cw and θ_{14} =110 ° cw and output angles Φ_{12} =30 ° cw, Φ_{13} =40 ° cw, Φ_{14} =50 ° cw. Take fixed frame length as 75 mm.

(9 marks)

- Show the different positions of the above designed mechanism with required coordination. (3 marks)
- 8. a. Derive the equation for the kinetic energy of rigid body in 3 dimension.

(6 marks)

- Explain gyroscopic effect. What are the applications of this effect? Mention the places where its effect is to be considered seriously.
- c. What is steady precession of a gyroscope? Explain how the crushing force in a crushing mill is magnified. (3 marks)
- a. Derive the equation for the angular momentum of a rigid body in 3 dimensions.
 (6 marks)
 - Derive the scalar equations for the rotation of a rigid body about a fixed axis.

(3 marks)

c. Explain the principle of impulse and momentum for the plane motion of a rigid body.

(3 marks)